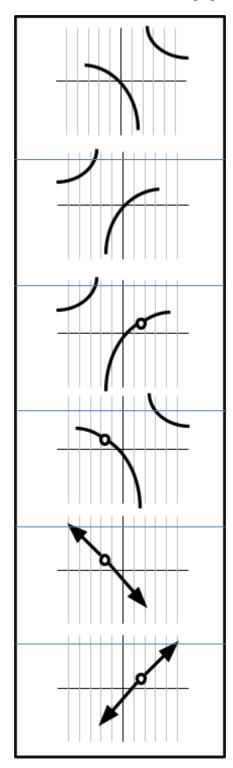

Rational Expressions/Function Operations Activity

Part A: Matching Rational Expressions

With a partner cut out all of the functions and the graphs and match them on the next page.

For all functions a > 0 b > 0


$$f(x) = \frac{x - b}{(x + a)}$$

$$f(x) = \frac{(x+a)(x-b)}{(x+a)}$$

$$f(x) = \frac{x-b}{(x+a)(x-b)}$$
e.
$$f(x) = \frac{x+a}{(x-b)}$$

$$f(x) = \frac{x+a}{(x-b)}$$

$$f(x) = \frac{(x+a)}{(x+a)(x-b)}$$
f.

Function	Graph
Please explain and mathematically justify your choice.	
Function	Graph
Please explain and mathematically justify your choice.	
Function	Graph

Please explain and mathematically justify your choice.

Function	Graph
Please explain and mathematically justify your choice.	
Function	Graph
Please explain and mathematically justify your choice.	
Function	Graph

Please explain and mathematically justify your choice.

Part B: Division of Functions

Given the functions:

$$a(x) = 2x + 6$$
 $b(x) = 3x - 9$ $c(x) = x^2$ $d(x) = x^2 - 9$ $e(x) = x^2$

State the quotient of 2 different functions that describe the following:

$$\frac{f_1(3)}{f_2(3)} = undefined \qquad \qquad \frac{f_1(0)}{f_2(0)} =$$
indeterminant case

$$y = \frac{f_1(x)}{f_2(x)}$$
 has a vertical asymptote at $x = 0$
$$y = \frac{f_1(x)}{f_2(x)}$$
 has a point of discontinuity at $x = 3$

$$y = \frac{f_1(x)}{f_2(x)}$$
 has two vertical asymptotes
$$y = \frac{f_1(x)}{f_2(x)}$$
 has a domain $x \neq \pm 3$