Math 9 Patterns & Relations

I Can Statements:

- > Patterns and Equations Generalize a pattern arising from a problem-solving context, using a linear equation, and verify by substitution.
 - I can represent a pattern with a linear equation.
 - I can substitute into an expression or equation to verify a solution.
- > Graphing Linear Relations Graph a linear relation, analyze the graph, and interpolate or extrapolate to solve problems.
 - o I can graph a linear relation.
 - I can use a graph to solve problems.
- > Solving Equations Model and solve problems, using linear equations of the form:
 - o I can represent a given problem with an algebraic equation.
 - I can solve the following types of equations:
 - \blacksquare ax = b
 - \blacksquare $\frac{x}{a} = b$, $a \neq 0$
 - \blacksquare ax + b = c

 - ax = b + cx
 - a(x + b) = c
 - ax + b = cx + d
 - a(bx + c) = d(ex + f)
 - \blacksquare $\frac{a}{x} = b$, $x \neq 0$

Where a, b, c, d, e, and f are rational numbers.

- I can verify the solution to an algebraic equation.
- ➤ **Inequalities** Explain and illustrate strategies to solve single variable linear inequalities with rational coefficients within a problem-solving context.
 - I can represent a given problem with an inequality.
 - I can solve inequalities.
 - I can verify the solution to an inequality.
- ➤ **Polynomials** Demonstrate an understanding of polynomials (limited to polynomials of degree less than or equal to two.)
 - I can recognize when an expression is (or is not) a polynomial.
 - I can classify a polynomial according to the number of terms (monomial, binomial, trinomial, or polynomial).
 - I can determine the degree of a polynomial.
 - I can identify the coefficient(s), variable(s), and constant in a polynomial.

- ➤ Adding & Subtracting Polynomials Model, record, and explain the operations of addition and subtraction of polynomial expressions, concretely, pictorially, and symbolically (limited to polynomials of degree less than or equal to two.)
 - o I can model addition of polynomials concretely, pictorially, and symbolically.
 - o I can model subtraction of polynomials concretely, pictorially, and symbolically.
 - o I can identify like terms.
 - I can simplify polynomials by collecting like terms.
 - I can add and subtract polynomials.
- ➤ Multiplying & Dividing Polynomials by Monomials Model, record, and explain the operations of multiplication and division of polynomial expressions (limited to polynomials of degree less than or equal to two) by monomials, concretely, pictorially, and symbolically.
 - I can model multiplication of monomials by polynomials concretely, pictorially, and symbolically.
 - I can model division of polynomials by monomials concretely, pictorially, and symbolically.
 - o I can multiply a polynomial by a monomial.
 - I can divide a polynomial by a monomial.

VOCABULARY

Math 7	Math 8	Less Than
Constant	Distributive Property	Greater Than or Equal To
Variable	Math 9	Less Than or Equal To
Algebraic Expression	Interpolate	>, <, ≥, ≤, =, ≠
Numerical Coefficient	Extrapolate	Monomial
Equation	Linear	Binomial
T-Chart	Relation	Trinomial
Pattern	Inequality	Polynomial
Stage Number	Vertical	Like Terms
Substitute	Horizontal	∈ (element of)
Equality	Degree	
Preservation of Equality	Greater Than	