Math 9 **Number Strand**

Livingstone Range

I Can Statements:

- 1. Powers Demonstrate an understanding of power with integral bases (excluding base 0) and whole number exponents by:
 - representing repeated multiplication, using powers
 - using patterns to show that a power with an exponent of zero is equal to one
 - solving problems involving powers.
 - □ I can identify the parts of a power (base, exponent, brackets) and their roles.
 - ☐ I can write a repeated multiplication number sentence as a power.
 - ☐ I can write a power as a repeated multiplication.
 - ☐ I can evaluate a power with a positive or negative base.
 - □ I can show that a base with an exponent of zero is equal to one.
 - ☐ I can solve problems involving powers.
- 2. Exponent Laws Demonstrate an understanding of operations on powers with integral bases (excluding base 0) and whole number exponents:

 - $(a^m)(a^n) = a^{m+n}$ $a^m \div a^n = a^{m-n}, m > n$
 - $(a^m)^n = a^{mn}$ $(ab)^m = a^m b^m$

 - ☐ I can prove why exponent laws work using examples.
 - □ I can simplify expressions using the exponent laws.
 - ☐ I can evaluate expressions using exponent laws.
- **3. Rational Numbers -** Demonstrate an understanding of rational numbers by:
 - comparing and ordering rational numbers
 - solving problems that involve arithmetic operations on rational numbers.
 - □ I can define the term rational number.
 - ☐ I can write rational numbers using equivalent numerical representations.

	☐ I can order a set of rational numbers.		
	☐ I can identify a rational number between two given rational numbers.		
	\Box I can compare rational numbers using mathematical language (<, >, and =).		
	☐ I can solve problems using arithmetic operations on rational numbers.		
4.	 Order of Operations - Explain and apply the order of operations, including exponents with and without technology. 		
	☐ I can explain order of operations.		
	☐ I can apply order of operations.		
5.	• Square Roots of Perfect Squares - Determine the square root of positive rational numbers that are perfect squares.		
	☐ I can determine if a rational number is a perfect square.		
	☐ I can identify the square root of a rational number that is a perfect square.		
6.	Approximating Square Roots - Determine an approximate square root of positive rational numbers that are non-perfect squares.		
	☐ I can estimate the square root of a rational number.		
	 □ I can estimate the square root of a rational number. □ I can use technology to determine the square root of a rational number. 		

VOCABULARY

Math 7	Divisor	Terminating Decimal
Divisble	Undefined	Repeating Decimal
Factor	(division by zero)	Round
Multiple	Sum	Approximation
Prime Number	Difference	Concretely
Composite Number	Place Value	(with manipulatives)
Natural Numbers	Area	Pictorially
Whole Numbers	Expression	(draw a picture)
Product	Equivalent	Symbolically
Quotient	Percent	(write a math sentence)
Remainder	Greater Than	Equivalent Fraction
Even	Less Than	Denominator
Odd	Equal To	Numerator
Dividend	Bar Notation	Improper Fraction

Proper Fraction Ascending Percent Of
Mixed Number Descending Percent Off
Lowest Terms Math 8 Ratio
Reduce Perfect Square Rate
Simplify Square Root Unit Rate

Common Denominator Factor Part to Part Integer Square Part to Whole Positive Squared Proportion Negative Benchmark Math 9 Zero Principle Approximate Power Zero Pairs Estimate Base Opposite Integers Rational Exponent

Number Line Irrational Order of Operations