Chemistry 20: Practice final # 2

Name _______ Score _______/76

1. The mass of 0.25 mol of iron (II) chloride is _____

а	65 g
b	37 g
С	32 g
d	1.3 kg

2. The volume of 4.50 mol of ammonia at STP is _____ L

а	112
b	4.98
С	5.51
d	101

3. The number of moles of $HNO_3(aq)$ in 3.75 x 10^{25} particles of $HNO_3(aq)$ is _____ mol

а	59.3
b	62.3
С	60.5
d	6.23 x 10 ⁴⁷

4. Which quantity is equivalent to the smallest mass of water vapor?

а	3.01 x 10 ²³ particles
b	1.25 mol
С	19.8 L of gas at STP
d	45.14 g

5. When heated, calcium carbonate releases carbon dioxide gas and leaves behind a residue of solid calcium oxide. If 0.250 mol of residue is formed, then a mass of ______ g of calcium carbonate has been heated.

а	100
b	56.0
С	224
d	25.0

6. Propane ($C_3H_8(g)$) undergoes complete combustion with sufficient oxygen. If 7.5 mol of oxygen is consumed, then _____ mol of carbon dioxide will be formed .

а	13
b	2.0
С	4.5
d	9.0

7. When a 1.2 mol/L solution of copper (II) nitrate dissociates, the concentration of the <u>anion</u> will be _____ mol/L

а	2.4
b	0.60
С	1.2
d	0.40

8. The solute that is <u>immiscible</u> with its solvent is _____

а	Water in oil
b	Water in ethanol
С	NaCl(s) in water
d	Butanol in methanol

9. When making 200 mL solution of 1.00 mol/L NaOH(aq), one should begin by _____

а	Dissolving 8.00 g of solute in 200 mL of solvent
b	Dissolving 40.0 g of solute in 100 mL of solvent
С	Dissolving 8.00 g of solute in 100 mL of solvent
d	Dissolving 40.0 g of solute in 200 g of solvent

10. Samples of oxygen gas are compared. Which sample has the most particles?

- i. 12.0 g of oxygen
- ii. 8.50 L at STP
- iii. 2.53 x 10²³ particles
- iv. 9.00 L at SATP

а	i
b	ii
С	iii
d	iv

11. In a formation reaction sufficient hydrogen gas reacts with 5.00 mol of oxygen gas to form hydrogen peroxide $(H_2O_2(I))$. If 12.0 mol of hydrogen peroxide is collected, then the percentage yield for this reaction is	%
a 120 b 83.3 c 240 d 41.7	
12. A 23.5 mg sample of a toxic compound is placed in 1.50 kg of water. The concentration of this toxic compound is ppm.	
a 23.5 b 15.7 c 0.282 d 3.54	
13. An unknown volume of 0.90 mol/L solution has 60 mL of water added to it. If the new diluted concentration of the solution is 0.45 mol/L, then the <u>initial volume</u> of the solution was mL	he
a 60 b 120 c 30 d 90	
14. Choosing from the list of equipment below, the glassware that gives the most accurate measurement for a volum 10.0 mL will be	e of
a Evaporating dishb Erlenmeyer flaskc Buretted beaker	
15. Michelle says that a 25.0 mL sample of a 5.00 % $\frac{V}{V}$ solution of hydrogen peroxide will have mL of solute	

5.00 25.0 1.25

	r H In and HRh. The colour of the indicators in the
16. A solution with a pH of 2.50 is added to three indicators: HBg	
order given will be,, and	
a Blue Vellous Blue	
a Blue Yellow Blue	
b Green Orange Blue	
c Yellow Yellow yellow	
d Yellow Orange yellow	
17. The pOH of a 0.000 225 mol/L solution of nitric acid is a 2.60 b 10.35 c 3.65	
d 11.40 18. If an acid has a pH of 3.50. the [OH (aq)] will be	
a 3.16 x 10 ⁻⁴ mol/L b 3.16 x 10 ⁻¹¹ mol/L c 3.2 x 10 ⁻⁴ mol/L d 3.2 x 10 ⁻¹¹ mol/L	
19. A solution has less H ⁺ (aq) ions than OH ⁻ (aq) ions. Choose the	statement below that is TRUE .
a The pH of the solution will be low	
b The indicator HOr will turn orange.	
c The solution will feel slippery.	
d The indicator HPr will be yellow.	
20. When an acid is diluted with distilled water, then the pH will	, and the solution will become

а	Rise	More acidic
b	Rise	More basic
С	Fall	More acidic
d	Fall	More basic

21.	The new volume of a fixed mass of an ideal gas whose pressure is increased	from 100 kPa to	200 kPa at a constant
	temperature will be		

а	One half the original volume
b Two times the original volume	
С	Four times the original volume
d	One fourth the original volume

22. A solution of Epsom salts (MgSO4(s)) is 7.50 % $\frac{W}{V}$. The mass of Epsom salts that will be present in 150 mL of solution will be _____ g .

а	5.00
b	15.0
С	11.3
d	50.0

23. The correct name for Au₃(PO₄)(s) would be _____

а	Silver phosphate
b	Gold (III) phosphate
С	Gold (I) phosphate
d	Gold phosphate

24. A sample of lead (II) chloride is added to 100 mL of water at room temperature. The correct symbol for this compound will be _____

а	PbCl ₂ (I)
b	PbCl ₂ (s)
С	PbCl ₂ (g)
d	PbCl ₂ (aq)

25. Which of the following observations is $\underline{\mathsf{not}}$ evidence for a chemical reaction?

「一	Cu/s) + 211Cl/ss) - Cu/Cl/ss) + 11/s)	
<u>_a</u>	$Cu(s) + 2HCl(aq) \rightarrow CuCl_2(aq) + H_2(g)$	
b	$H_2(s) \rightarrow H_2(g)$	
С	Precipitate is formed	
d HPr changes from pink to colourle		

26	Δ dilute	solution i	s one i	n which	there is	
۷٠.	A unute	3010110111	3 0116 1	II WILLCII	tilele is	

а	Large amount of solute in a large amount of solvent
b	Large amount of solute in a small amount of solvent
С	Small amount of solute in a large amount of solvent

27. Consider the following unbalanced reaction

F ₂ (g) +	$C_8H_{12}(I) \rightarrow$	C(s) +	HF(g)
F2(8) + .	$_{}$ $C_8\Pi_{12}(1)$	C(s) + _	חרוצו

When the above reaction is <u>balanced with the smallest whole numbers possible</u>, the numerical coefficient for HF(g) is

а	1
b	6
С	8
d	12

28. When an acid is diluted with a large quantity of water, the pH will _____ because the [$H^{+}(aq)$] is

____·

а	Rise	Falling
b	Rise	Rising
С	Fall	Falling
d	Fall	Rising

29. A compound has a formula of $T_3M_2(s)$. If the molar mass of the compound is 155.9 g/mol and the molar mass of the element T(s) is 25.1 g/mol, then the molar mass of the element M(s) is ______ g/mol

а	35.2
b	130.8
С	40.3
d	26.9

30. The molar mass of $Mn(CO_3)_2(s)$ is ______ g/mol

а	144.33
b	174.96
С	126.96
d	114.95

31. Use the reaction given below:

____ $Ca(OH)_2(s) + ___ HF(aq) \rightarrow ___ H_2O(I) + ___ CaF_2(s)$

Be sure to balance the reaction first.

If 150 g of water is formed, then the number of moles of Ca(OH)₂(s) that is reacted is _____ mol

а	17	
b	9.38	
С	8.32	
d	4.16	

32. A quantity of ____ mol of NaCl(s) is equal in mass to 1.50 mol of CaO(s).

а	1.56
b	1.44
С	1.50
d	1.04

33. Consider the following unbalanced equation

 $\underline{\qquad}$ Li₂S(s) + $\underline{\qquad}$ MnO₂(s) \rightarrow $\underline{\qquad}$ Li₂O + $\underline{\qquad}$ MnS₂

The TRUE statement about the <u>balanced</u> reaction will be _____

а	a When 4.0 mol of Li ₂ S(s) is consumed, 2 mol of MnS ₂ (s) will be formed.	
b	When 0.5 mol of MnO ₂ (s) is consumed, 2 mol of Li ₂ O(s) will be formed.	
С	If 3 mol Li ₂ O(s) is formed, then 4 mol of Li ₂ S will be consumed.	
d	If 3.0 mol of Li ₂ O(s) forms, then 6.0 mol of MnS ₂ (s) will be formed.	

34. The concentration of a salt solution that contains 120 g of NaOH(s) in 200 mL of water is _____ mol/L

а	15.0
b	0.600
С	1.67
d	24.0

35. In order to dilute 70.0 mL of a 2.00 mol/LNaCl(aq) to a concentration of 0.750 mol/L, _____ mL of distilled water should be added.

а	187
b	21.4
С	48.6
d	117

36. A technician added 50.0 mL of distilled water to a 100 mL sample of 1.50 mol/L solution of $Na_3PO_4(aq)$. The diluted concentration of the compound, the anion, and the cation will be _____ mol/L, ____ mol/L, and ____ mol/L respectively.

_				
	а	0.500	1.50	0.500
	b	1.00	1.00	3.00
Ī	С	0.500	0.500	1.50
ſ	d	1.00	3.00	1.00

37. Consider the following reaction

 $Al^{3+}(aq) + 3Ag(s) \rightarrow 3Ag^{+}(aq) + Al(s)$

The chemical reagent that has undergone <u>reduction</u> is _____

а	Ag(s)
b	Ag⁺(aq)
С	Al ³⁺ (aq)
d	Al(s)

38. When a substance undergoes <u>oxidation</u>, it ______ electrons and becomes more _____ charged.

а	Gains	Negatively
b	Gains	Positively
С	Loses	Negatively
d	Loses	Positively

39. An atom of sulfur has ______ valence electrons and _____ lone pairs of electrons.

а	16	2
b	6	4
С	6	2
d	16	4

because it wants to outer electron(s). a F Cation Lose b F Anion Gain c Fr Cation Lose d Fr Anion Gain c Fr Cation Lose d Fr Anion Gain d Fr Anion Gain 41. NaCl(s), LiOH(s) and Ca(NO ₃) ₂ (s) are all compounds because electrons are 3 Ionic Shared b Molecular Shared c Ionic Transferred d molecular transferred a Hexacarbon hexahydride Benzene b Benzene Hexacarbon hexahydrate c Benzene Hexacarbon hexahydride d Heptacarbon heptahydrate Benzene d Heptacarbon heptahydrate Benzene shape with single bond(s) between hydrogen and carbon. a Pyramidal 4 b Tetrahedral 4 c Linear 1 d Trigonal planar 1 44. When separating the boiling points of CH ₄ (g) from that of C ₂ H ₈ (g), the most significant force is	40. Th	e elen			he highest electronegativity is and it commonly forms a(n)
b F Anion Gain c Fr Cation Lose d Fr Anion Gain 41. NaCl(s), LiOH(s) and Ca(NO ₃) ₂ (s) are all compounds because electrons are Alionic Shared			_ because it wants		outer electron(s).
b F Anion Gain c Fr Cation Lose d Fr Anion Gain 41. NaCl(s), LiOH(s) and Ca(NO ₃) ₃ (s) are all compounds because electrons are A lonic Shared		а	F Cation	Lose	
C Fr Cation Lose d Fr Anion Gain			 		
41. NaCl(s), LiOH(s) and Ca(NO ₃) ₂ (s) are all compounds because electrons are a lonic		-			
41. NaCl(s), LiOH(s) and Ca(NO ₃) ₂ (s) are all compounds because electrons are			 		
a lonic Shared b Molecular Shared c lonic Transferred d molecular transferred 42. The compound C ₆ H ₆ (I) has a common name of and a scientific name of a Hexacarbon hexahydride Benzene b Benzene Hexacarbon hexahydrate c Benzene Hexacarbon hexahydride d Heptacarbon heptahydrate Benzene 43. A molecule of methane (CH ₄ (g)) has a shape with single bond(s) between hydrogen and carbon. a Pyramidal 4 b Tetrahedral 4 c Linear 1 d Trigonal planar 1 44. When separating the boiling points of CH ₄ (g) from that of C ₃ H ₈ (g), the most significant force is a Non polar covalent bonds b Dipole dipole forces c Hydrogen bonds			1,		
b Molecular Shared c Ionic Transferred d molecular transferred 42. The compound C ₆ H ₆ (I) has a common name of and a scientific name of a Hexacarbon hexahydride Benzene b Benzene Hexacarbon hexahydrate c Benzene Hexacarbon hexahydride d Heptacarbon heptahydrate Benzene 43. A molecule of methane (CH ₄ (g)) has a shape with single bond(s) between hydrogen and carbon. a Pyramidal 4 b Tetrahedral 4 c Linear 1 d Trigonal planar 1 44. When separating the boiling points of CH ₄ (g) from that of C ₅ H ₈ (g), the most significant force is a Non polar covalent bonds b Dipole dipole forces c Hydrogen bonds	41.	NaCl(s), LiOH(s) and Ca(l	NO₃)₂(s) are all	II compounds because electrons are
b Molecular Shared c Ionic Transferred d molecular transferred 42. The compound C ₆ H ₆ (I) has a common name of and a scientific name of a Hexacarbon hexahydride Benzene b Benzene Hexacarbon hexahydrate c Benzene Hexacarbon hexahydride d Heptacarbon heptahydrate Benzene 43. A molecule of methane (CH ₄ (g)) has a shape with single bond(s) between hydrogen and carbon. a Pyramidal 4 b Tetrahedral 4 c Linear 1 d Trigonal planar 1 44. When separating the boiling points of CH ₄ (g) from that of C ₄ H ₈ (g), the most significant force is a Non polar covalent bonds b Dipole dipole forces c Hydrogen bonds		а	Ionic	Shared	
c lonic Transferred d molecular transferred 12. The compound C ₆ H ₆ (I) has a common name of and a scientific name of 13. A molecule of methane (CH ₄ (g)) has a shape with single bond(s) between hydrogen and carbon. 14. When separating the boiling points of CH ₄ (g) from that of C ₃ H ₈ (g), the most significant force is 15. Non polar covalent bonds b Dipole dipole forces c Hydrogen bonds		_	Molecular	_	
d molecular transferred 12. The compound C ₆ H ₆ (I) has a common name of and a scientific name of a Hexacarbon hexahydride Benzene Hexacarbon hexahydrate c Benzene Hexacarbon hexahydride d Heptacarbon heptahydrate Benzene 13. A molecule of methane (CH ₄ (g)) has a shape with single bond(s) between hydrogen and carbon. a Pyramidal 4 b Tetrahedral 4 c Linear 1 d Trigonal planar 1 14. When separating the boiling points of CH ₄ (g) from that of C ₃ H ₈ (g), the most significant force is		С		_	 d
12. The compound C _e H _e (I) has a common name of and a scientific name of a			<u> </u>		
a Hexacarbon hexahydride Benzene b Benzene Hexacarbon hexahydrate c Benzene Hexacarbon hexahydride d Heptacarbon heptahydrate Benzene 33. A molecule of methane (CH ₄ (g)) has a shape with single bond(s) between hydrogen and carbon. a Pyramidal 4 b Tetrahedral 4 c Linear 1 d Trigonal planar 1 14. When separating the boiling points of CH ₄ (g) from that of C ₃ H ₈ (g), the most significant force is					
c Benzene d Hexacarbon hexahydride d Heptacarbon heptahydrate Benzene 13. A molecule of methane (CH ₄ (g)) has a shape with single bond(s) between hydrogen and carbon. a Pyramidal 4 b Tetrahedral 4 c Linear 1 d Trigonal planar 1 14. When separating the boiling points of CH ₄ (g) from that of C ₃ H ₈ (g), the most significant force is a Non polar covalent bonds b Dipole dipole forces c Hydrogen bonds		—	 	hydride	
d Heptacarbon heptahydrate Benzene 43. A molecule of methane (CH ₄ (g)) has a shape with single bond(s) between hydrogen and carbon. a Pyramidal 4		_			
A molecule of methane (CH ₄ (g)) has a shape with single bond(s) between hydrogen and carbon. a Pyramidal 4 b Tetrahedral 4 c Linear 1 d Trigonal planar 1 4. When separating the boiling points of CH ₄ (g) from that of C ₃ H ₈ (g), the most significant force is a Non polar covalent bonds b Dipole dipole forces c Hydrogen bonds		-		****	
hydrogen and carbon. a Pyramidal 4 b Tetrahedral 4 c Linear 1 d Trigonal planar 1 4. When separating the boiling points of CH ₄ (g) from that of C ₃ H ₈ (g), the most significant force is a Non polar covalent bonds b Dipole dipole forces c Hydrogen bonds		a	Heptacarbon nep	otanyarate	Benzene
b Tetrahedral 4 c Linear 1 d Trigonal planar 1 4.4. When separating the boiling points of CH ₄ (g) from that of C ₃ H ₈ (g), the most significant force is a Non polar covalent bonds b Dipole dipole forces c Hydrogen bonds				H ₄ (g)) has a	shape withsingle bond(s) between
c Linear 1 d Trigonal planar 1 14. When separating the boiling points of CH ₄ (g) from that of C ₃ H ₈ (g), the most significant force is a Non polar covalent bonds b Dipole dipole forces c Hydrogen bonds		а	Pyramidal	4	1
d Trigonal planar 1 14. When separating the boiling points of CH ₄ (g) from that of C ₃ H ₈ (g), the most significant force is a Non polar covalent bonds b Dipole dipole forces c Hydrogen bonds		b	Tetrahedral	4	1
14. When separating the boiling points of CH ₄ (g) from that of C ₃ H ₈ (g), the most significant force is a Non polar covalent bonds b Dipole dipole forces c Hydrogen bonds		С	Linear	1	1
a Non polar covalent bonds b Dipole dipole forces c Hydrogen bonds		d	Trigonal planar	1	1
b Dipole dipole forces c Hydrogen bonds	14. WI				$H_4(g)$ from that of $C_3H_8(g)$, the most significant force is
c Hydrogen bonds			.		
			<u> </u>		\dashv
		d	 		

ermo							ramoleucular forces measure
	p	articles. The s	stronger o	t the two types o)T TORCE	es is	forces.
_	Within	between		Intermolecular			
a b	Between	Within		Intramolecular			
	Within	Between		Intramolecular			
C	_						
d	between	within		Intermolecular			
e cor	mpound that ex	hihits polar co	valent bo	nds with NO hyd	rogen l	honds is	
c co.	inpound that ex	mores polar co	valent 50	nas wien no nya	OBCITT	501143 13 _	
а	CH ₃ F						
b	NH ₃						
С	C_2H_2						
d	F ₂						
d e stro	N₂(g)	force is		while the v	weakes	t honding:	force is
c str	ongest bonding	10100 13		willie the v	veakes	it boriaing	10100 13
a	Ionic		Dipole	e – dipole			
b	Metallic		Non p	olar covalent			
С	Network cova	alent	Londo	n dispersion			
d	Non polar co	valent	Netwo	ork covalent			
	_				<u>ı</u> boilin	g point to	the <u>highest boiling point</u> , the
emic	al that would be	e listed last wo	ould be				
	. />!!! /	/o · · · =	/ / / / / / / / / / /				(2) ())
nmor	nia (NH₃(g)), suc	rose ($C_{12}H_{22}O_1$	₁ (s)) , lithi	um hydroxide (Li	OH(s))	, nitrogen	gas $(N_2(g))$
	Sucross)]			
))	Sucrose Ammonia			-			
		wido		1			
:	Lithium hydro	xiae		4			
	Nitrogen gas						

Page **10** of **17**

		iii.	Methane Water Ethene Ammonia	A. B. C. D.	linear Bent trigonal planar Pyramidal
	The pai	r above tha	t is FALSE is		
	а	i and A			
	b	ii and B			
	С	iii and C			
	d	Iv and D			
51.	A comp	ound that h	nas a coordin	ate covalei	nt bond is
0	сор				
	а	ammonia			
	b	Lithium su	ılfide		
	С	Ammoniu	m chloride		
	d	methane			
	Left jus	tify the ansv	e question: wer in the bo		ed
		-	nse question wer in the bo	xes provid	ed
	The cat	ion concent	ration of a 7	5.0 mL san	nple of 2.54 mol/L zinc sulfate solution will be mol/L

50. Audrey and Samantha match up compounds with sterochemical shapes.

54.	Numerical respon	se question				
	Left justify the ans	swer in the boxes	provided			
	A 20.0 L sample of Assume the press			ıme of	L if the temperature changes to 75.1°	C.
55.	Numerical respon	se question				
	Left justify the ans	swer in the boxes	provided			
			provided			
			ide has oxes provided above.		Express the answer as a.b x 10 ^{cd} where	a,b,c,d
56.	Numerical respon	se question				
	Left justify the ans	swer in the boxes	provided			
	•			-	mol blue, orange IV, cresol red and tors in the order given using the table be	elow.
		Number	Color			
		1	Red			
		2	Yellow			
		3	Orange			
		4	Blue			
		5	Green			
		6	Colorless			
	Their answer wou	ld be,	, and			

	Left j	justify	the an	swer in t	he boxes	provided		
			ı					
	A pre	essur	e of 800	mm of	mercury	will be equiva	lent to k	Pa.
		1						
		2						
		3						
		4						
50	Num	orica	l rosnor	nse ques	tion			
56.	Nulli	lerica	rrespor	ise ques	tion			
	Left j	justify	the an	swer in t	he boxes	provided		
	1	1	1	I	1			
					'			
	Justi	n and	l Aaron	have a 5	0 mL sar	mple of 0.0036	6 mol/L Ba(OH)₂(a	q)
	Expr	ess th	ne conce	entration	າ of [H⁺(a	q)] found in t	his solution in the	form a.b x 10 ^{-cd} .
59	Num	erica	l resnor	nse ques	tion			
55.	· · ·	Ciica	ПСЗРОГ	ise ques				
	Left j	justify	the an	swer in t	he boxes	provided		
		•	•	-				
	Lynn	and	Carol bu	uild a thr	ee dime	nsional mode	l of a molecule of	acetylene ($C_2H_2(g)$). Record <u>ALL</u> the correct
			ons fron	n the tab	ole belov	v. The observ	ations should be I	isted from the lowest number to the largest
	num	ber.						
		1	The m	olecule i	s a symm	netrical linear	shane	1
		2				le bond(s)	ларс —	
		3				ymmetrical ar	gular shane	
		4			nas triple	<u> </u>	Ocial oliabe	
								1

57. Numerical response question

60.	Numerical response question
	Left justify the answer in the boxes provided
	Sarah and Erin react 45 g of oxygen gas with 3.5 mol of hydrogen gas to form water. The number of moles of excess reagent for this reaction will be mol.
61.	Numerical response question
	Left justify the answer in the boxes provided
	The number of polyprotic acids given in the list below is
	Sulfuric acid, nitric acid, oxalic acid, hydrochloric acid, sulfurous acid
62.	. <u>Long answer:</u>
	A 25.0 mL sample of 2.0 mol/L sodium oxalate is reacted with 30.0 mL of 1.50 mol/L copper (II) nitrate solution.
	a) Write a balanced reaction (1 mark)
	b) Find the limiting reagent (3 marks)
	c) Find the mass of precipitate formed (2 marks)d) Find the mmol of excess reagent left. (2 marks)
63.	A 50 g sample of chlorine gas is placed in a 4.0 L container. Find the pressure inside the container if the temperature of the container is 300K. Express the answer in kPa. (2 marks)

64. Kent and Rhonda have 100 mL of a solution of Na ₂ SO ₃ (aq). The concentration of the	cation is 3	1.40 mol/L
---	-------------	------------

- a) Find the concentration of the **compound**. (1 mark)
- b) Find the mass of solute that will be dissolved to make this solution. (2 marks)
- c) If 150 mL of distilled water is added to the original solution, the new diluted concentration of the <u>cation</u> will be _____ mol/L (2 marks)

Chemistry 20 Final: Practice exam # 2

Answer Page

Multiple choice questions (1 mark each = 51)

1	С	16	D	31	D	46	Α
2	D	17	В	32	В	47	В
3	В	18	D	33	А	48	С
4	А	19	С	34	Α	49	С
5	D	20	В	35	D	50	Α
6	С	21	А	36	В	51	С
7	А	22	С	37	С		
8	Α	23	С	38	d		
9	С	24	В	39	С		
10	С	25	В	40	b		
11	С	26	С	41	С		
12	В	27	D	42	С		
13	Α	28	Α	43	В		
14	С	29	С	44	D		
15	D	30	В	45	В		

Numerical response questions (1 mark x 10 = 10)

52	5.00	57	107
53	2.54	58	1412
54	22.7	59	14
55	2323	60	0.69
56	3322	61	3

Long answer:

62. a)
$$Na_2OOCCOO(aq) + Cu(NO_3)_2(aq) \rightarrow 2NaNO_3(aq) + CuOOCCOO(s)$$
 (1 mark)

- b) copper (II) nitrate (3 marks)
- c) mass of CuOOCCOO(s) = 6.82 g (2 marks)
- d) excess $Na_2OOCCOO(aq) = 0.500$ mmol (2 marks)
- 63. p = 440 kPa (2 marks)
- 64. a) $[Na_2OO_3(aq)] = 0.700 \text{ mol/L (1 mark)}$
 - b) mass = 8.82 g (2 marks)
 - c) [cation] = 0.560 mol/L (2 marks)

Total: ______76 marks