Chemistry 20: Practice Final # 1

d Losing one proton

Name							S	core	/100
1.	1. An element with 6 valence electrons would be found in group of the periodic table.					of the periodic table.			
	а	1							
	b	2							
	С	16							
	d	17							
2.	An exan	nple of an <u>el</u>	<u>eme</u>	<u>nt</u> is					
	а	Water							
	b	Iron powde	r						
	С	Copper (II)	sulfa	ite pen	ta hy	drate			
	d	lead (IV) flu	orid	е					
4.	a b c d	The electro Any electro The electro Any electro	n in n th n in	the hig at is gai the low	hest ined vest	energy le when an energy lev	vel of anion el of	an atom	
	а		b		С		d]
		• •	~	•		••	-	••	
		:O:		:0:		. O:		:O:	
				•		•		••	
5.	-	ment chorine	e for	ms the	ion	chloride (0	Cl ⁻ (aq)) by	
٥.	ine eiei	incinc cirorini							
Э.		1				\neg			
Э.	a b	Gaining one	e ele	ctron		\exists			

6.	The element, fluorine, has an atomic number of 9	. An atom of fluorine has	lone pair(s) of electrons and
	bonding electron(s).		

а	1	6
b	6	1
С	1	3
d	3	1

7. Which of the following combined atoms would include a <u>polar covalent</u> bond?

а	Hydrogen - hydrogen
b	Carbon – hydrogen
С	Nitrogen – nitrogen
d	Chlorine - chlorine

8. Which formula represents a <u>non-polar</u> molecule

а	NH ₃ (g)
b	HF(g)
С	CCI ₄ (I)
d	H ₂ O(I)

9. The compound that contains a trigonal planar shape about one of its central atoms is _____

a	C ₄ H ₁₀ (g)
b	C ₂ H ₄ (g)
С	C ₆ H ₆ (I)
d	C ₂ H ₅ OH(I)

10. The number of electrons that are shared in a hydrogen – carbon bond is _____

а	One
b	Two
С	Three
d	four

11. The number of bonds between nitrogen atoms in a nitrogen molecule is
b 2
c 3 d 4
u 4
12. Of the molecules listed below, the one exhibiting pyramidal shape around its central atom is
a SO ₂ (g)
b CH ₄ (g)
c NH ₃ (g)
$\begin{array}{c c} & & & \\ \hline d & C_2H_4(g) & & \\ \end{array}$
13. The shape around each C atom in C ₂ H ₂ (g) is
a Linear
b V-shaped
c Pyramidal
d tetrahedral
14. The transfer of electrons from sodium atoms to chlorine atoms results in the formation of a/an
bond.
a Polar covalent
a Polar covalent b Coordinate covalent
a Polar covalent
a Polar covalent b Coordinate covalent c Non polar covalent
a Polar covalent b Coordinate covalent c Non polar covalent
a Polar covalent b Coordinate covalent c Non polar covalent d Ionic 15. Which is the formula of a non-polar molecule containing non-polar bonds?
a Polar covalent b Coordinate covalent c Non polar covalent d Ionic 15. Which is the formula of a non-polar molecule containing non-polar bonds?
a Polar covalent b Coordinate covalent c Non polar covalent d Ionic 15. Which is the formula of a non-polar molecule containing non-polar bonds?
a Polar covalent b Coordinate covalent c Non polar covalent d lonic 15. Which is the formula of a non-polar molecule containing non-polar bonds? a CO ₂ (g) b H ₂ (g)
a Polar covalent b Coordinate covalent c Non polar covalent d Ionic 15. Which is the formula of a non-polar molecule containing non-polar bonds? a CO ₂ (g) b H ₂ (g) c NH ₃ (g) d H ₂ O(I)
a Polar covalent b Coordinate covalent c Non polar covalent d Ionic 15. Which is the formula of a non-polar molecule containing non-polar bonds? a CO ₂ (g) b H ₂ (g) c NH ₃ (g)
a Polar covalent b Coordinate covalent c Non polar covalent d Ionic 15. Which is the formula of a non-polar molecule containing non-polar bonds? a CO ₂ (g) b H ₂ (g) c NH ₃ (g) d H ₂ O(I)
a Polar covalent b Coordinate covalent c Non polar covalent d Ionic 15. Which is the formula of a non-polar molecule containing non-polar bonds? a CO ₂ (g) b H ₂ (g) c NH ₃ (g) d H ₂ O(I) 16. Which statement best explains why CCl ₄ (I) is a non-polar molecule?
a Polar covalent b Coordinate covalent c Non polar covalent d Ionic 15. Which is the formula of a non-polar molecule containing non-polar bonds? a CO ₂ (g) b H ₂ (g) c NH ₃ (g) d H ₂ O(I) 16. Which statement best explains why CCl ₄ (I) is a non-polar molecule? a C and Cl are non metals

17. Hydrogen bonds are the strongest between molecules of _____

а	HF
b	HCl
С	HBr
d	HI

18. Dipole-dipole attraction forces are the strongest between molecules of _____

а	H ₂ (g)
b	CH ₄ (g)
С	H ₂ O(I)
d	CO ₂ (g)

19. Which molecule is the MOST polar?

а	H ₂ O(I)
b	H ₂ S(g)
С	H ₂ Te(s)
d	H₂Se(s)

20. Liquid ammonia reacts with oxygen to product nitric acid and water. The balanced equation for this process is

a $NH_4(I) + O_2(g) \rightarrow NO_2(g) + H_2(g)$ heat b $NH_3(g) + O_2(g) \rightarrow HNO_3(aq) + H_2O(I)$ c $2O_2(g) + 2 NH_4(I) \rightarrow H_2O(I) + 2HNO_3(aq)$ d $2O_2(g) + NH_3(I) \rightarrow H_2O(I) + HNO_3(aq)$

21. Which one of the following represents a double replacement reaction?

а	Sulfuric acid and potassium hydroxide → water + potassium sulfate	
b	Calcium + water → hydrogen + calcium hydroxide	
С	Methane + oxygen → carbon dioxide + water	
d	Hydrogen + oxygen → hydrogen peroxide	

22. Calcium sulfate and cesium dichromate →

а	$CeSO_4(s) + CaCr_2O(s)$
b	$CaS + Cs(CrO_4)_2(s)$
С	$Ce_2S(s) + Ca(Cr_2O_7)_2(s)$
d	$Cs_2SO_4(s) + CaCr_2O_7(s)$

23. The correct formula for ammonium phosphate is		

a	$NH_4PO_4(s)$
b	$(NH_4)_3PO_4(s)$
С	$NH_4(PO_4)_3(s)$
d	(NH3)4PO4(s)

24. The correct name for $Pb_3(PO_4)_2(s)$ would be ______

а	Trilead diphosphate	
b	Plumbic phosphate	
С	Lead (II) phosphate	
d	Lead (III) phosphate	

25. The formula for calcium chloride at SATP is best written as _____

а	CaCl ₂ (I)
b	CaCl ₂ (s)
С	CaCl ₂ (g)
d	CaCl ₂ (aq)

26. Which of the following observations is **not** evidence for a chemical reaction?

а	$Zn(s) + 2HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$	
b	Color is changed	
С	Precipitate is formed	
d	$H_2O(s) \rightarrow H_2O(g)$	

27. A concentrated solution is one in which there is _____

а	Large amount of solute in a large amount of solvent	
b	Large amount of solute in a small amount of solvent	
С	Small amount of solute in a large amount of solvent	
d	Small amount of solute in a small amount of solvent	

28. Consider the following unbalanced reaction

$$___Cl_2(g) + ___C_{10}H_{16}(I) \rightarrow ___C(s) + ___HCI(g)$$

When the above reaction is <u>balanced with the smallest whole numbers possible</u>, the coefficient for Cl₂(g) is

а	1
b	4
С	8
d	16

29. A mole is correctly defined as

а	22.4 L of a gas
b	One gram of a substance
С	One molecule of a substance
d	One molar mass of a substance

30. Consider the following unbalanced reaction

____ AsCl₃(aq) + ____ H₂S(aq)
$$\rightarrow$$
 ____ As₂S₃(s) + ___ HCl(aq)

Which of the following statements is TRUE when the equation above is correctly balanced?

а	The sum of the moles of reactants must equal the sum of the moles of the products
ıu	I THE Suill of the moles of reactains mast equal the suill of the moles of the products

b 9 mol of H₂S(aq) will combine with 4 mol of AsCl₃(aq)

31. How many moles of CO₂(g) are there in 176 g of carbon dioxide?

а	21.1 x 10 ²³
b	6.02 X 10 ²³
С	44.0
d	4.00

32. The molar mass of $Al_2(CO_3)_3(s)$ is ______ g

а	86.99
b	207.01
С	209.97
d	233.99

c 4 mole of AsCl₃(aq) will produce 12 mol of HCl(aq)

d There is no relationship between the number of moles of reactants and the number of moles of products.

	s of 0.250 mol of a compound with the molecular formula $LZ_3(s)$ is 17.0 g. If the molar mass of the
a b	L is 11.00 g/mol, then the molar mass of Z is g/mol g/mol g/mol g/mol g/mol
	Use the following information to answer questions 34 & 35.
	137 g of Mg(OH)₂(s) is reacted according to the following equation
	$_{} Mg(OH)_2(s) + _{} HBr(aq) \rightarrow _{} H_2O(I) + _{} MgBr_2(s)$
34. The num	ber of moles of Mg(OH)₂(s) that is reacted is mol
b c	1.54 2.35 3.32 4.57
35. The mass	of water produced when 473 g of MgBr ₂ (s) is produced will be g
b c	55.4 92.6 85.4 169
36. The quan	atity of NaOH(s) that is equal in mass to 2.00 mol of CaCO ₃ (s) is mol
b 2	2.00 2.50 5.00 33.3
	the following unbalanced equation $PO_4(s) + \underline{\hspace{1cm}} CaO(s) \Rightarrow \underline{\hspace{1cm}} Na_2O(s) + \underline{\hspace{1cm}} Ca_3(PO_4)_2(s)$
The TRU	IE statement about the reaction
	0.20 mol of Na ₃ PO ₄ (s) reacts with 0.30 mol CaO(s)
	1.5 mol of CaO(s) produces 4.5 mol Ca ₃ (PO ₄) ₂ (s)
	1.0 mol Na ₃ PO ₄ (s) produces 2.5 mol Na ₂ O(s)
d l	2.0 mol of $Na_3PO_4(s)$ produces 2.0mol $Ca_3(PO_4)_2(s)$

38. Substances that dissolve each other in any proportion are said to be
a Saturated b Diluted c Miscible d Aqueous
39. The number of moles of sodium nitrate in a 40.0 mL sample of 0.150 mol/L solution is mol
a 6.00 b 2.67×10^{-1} c 3.75×10^{-3} d 6.00×10^{-3}
40. Consider the equation for the electrolysis of water
$2H_2O(I) \rightarrow 2 H_2(g) + O_2(g)$
The number of moles of $O_2(g)$ produced by the reaction using 90 g of $H_2O(I)$ is mol
a 1.0 b 2.0 c 2.5 d 5.0
41. The concentration of a salt solution that contains 77.4 g of KBr(s) in 500 mL of water is mol/L
a 0.00130 b 0.130 c 1.30 d 5.00
42. What mass of sodium hydroxide is contained in 200 mL of a saturated 19.1 mol/L solution?
a 19.6 g b 138 g c 153 g d 76.4 g
43. The molar concentration of a solution made by diluting 10.0mL of a 0.740 mol/L KCl(aq) solution to a volume of 250 mL is mol/L
a 0.0338 b 0.0296 c 0.0200

Page **8** of **21**

0.0185

44	l. In order to dilute 50.0 mL of a	6.00 mol/L HCl(aq) to a concentration of 0.150 mol/L, water should be added until
	the final volume is	_L

а	2.00
b	2.50
С	3.00
d	4.00

45. Which of the following combinations are immiscible?

а	Hydrochloric acid and water
b	Ethanol and water
С	Gasoline and oil
d	Gasoline and water

46.	A technician took 50.0 mL of distilled water and gradually added it to a solution of HCI(aq).	The effect on moles of
	solute, volume of solution and concentration of solution respectively are,	, and
	·	

	а	Increased	Increased	Increased
	b	Decreased	Decreased	Decreased
	С	Unchanged	Increased	Decreased
Ī	d	Unchanged	Decreased	increased

47. An adjustment was made to the concentration of a solution as shown in the table

	Moles of solute (mol)	Concentration mol/L	Volume (L)
Initial	0.50	0.25	X
Final	0.50	0.15	Υ

How does volume X compare to volume Y?

Α	X is greater than or equal to volume Y
В	X is greater than volume Y
С	X is less than volume Y
D	X is equal to volume Y

48.	The molar concentration	n of a solution is ex	pressed in units of
	a Moles per	litre	
	b Percent by		
	c Parts per i		
	d Percent by		
	a research	volume	
49.	An acidic solution does	NOT	
	a Conduct a	n electric current	
	b Turn red li	 tmus blue	
	- 		produce hydrogen gas
	d Neutralize		7 0 0
	<u> </u>		
50.	-	lius definition, a bas	se is a substance that when dissolved in water
		itmus paper blue	
	 	the hydrogen ion co	oncentration
		the hydroxide conce	
	u increases	The Hydroxide conce	entration
51.	The products of neutral	ization are	and
	a Salt	Water	
	b Salt	Base	
	c Salt	Acid	
	d Acid	Base	
52.	When the pH of a soluti	on changes from 10	0 to 8, the [OH ⁻ (aq)]
		nd the solution bed	
	b Decrease a	nd the solution bed	comes less acidic
	c Increases a	nd the solution bed	comes more basic
	d Decreases	and the solution be	ecomes less basic
53.	Acids are substances wh	nich have	
	a High [OH ⁻ (a	aq)] and low pH	
	b High [OH (a	q)] and high pH	
	c Low [H ₃ O ⁺	(aq)] and high pH	
	d High [H₃O⁺	(aq)] and low pH	

54. If [$H_3O^+(aq)$] of a solution is 7.5 x 10^{-4} mol/L, then the [OH $^-(aq)$] is _____ mol/L

а	1.3 x 10 ⁻¹¹
b	2.5 x 10 ⁻¹¹
С	7.5 x 10 ⁻⁴
d	2.5 x 10 ⁻⁴

55. If the [OH $^{-}$ (aq)] of a solution is 3.2 x 10 $^{-6}$ mol/L, then the [H $_{3}O^{+}$ (aq)] is _____ mol/L

а	3.2 x 10 ⁻⁶
b	6.8 x 10 ⁻⁸
С	3.1 x 10 ⁻⁹
d	3.4 x 10 ⁻¹⁰

56. The [$H_3O^+(aq)$] of grapefruit juice is about 6.3 x 10^{-4} mol/L. The pH of this juice is ______

а	0.80
b	3.20
С	3.40
d	10.80

57. The [OH $^{-}$ (aq)] of a cracker is 2.3 x 10 $^{-6}$ mol/L. The pH of the cracker is _____

	а	5.64
	b	6.36
	С	8.36
	d	9.63

58. If 2.5 mol of barium hydroxide (Ba(OH)₂(s))is dissolved in 60 L of water, the pH of the solution would be _____

	а	12.92
	b	1.08
	С	1.38
1	d	12.62

59. The sauerkraut in a Reuben sandwich has a pH of 3.58. The [H₃O⁺(aq)] of the sauerkraut is _____

а	2.6 x 10 ⁻¹¹ mol/L
b	3.8 x 10 ⁻¹¹ mol/L
С	2.6 x 10 ⁻⁴ mol/L
d	3.8 x 10 ⁻⁴ mol/L

60. Limburger cheese has a pH of 4.80 The [OH (aq)] of the cheese is m	mo	ol,	/
--	----	-----	---

а	6.3 x 10 ⁻⁴
b	2.0 x 10 ⁻⁵
С	1.6 x 10 ⁻⁵
d	6.3 x 10 ⁻¹⁰

61. The [OH (aq)] of an egg white is 3.4 x 10⁻⁷ mol/L. The egg is ______

a Slightly basic		Slightly basic
	b	Highly basic
	С	Highly acidic
	d	Slightly acidic

62. The pH of a solution is 5.80. The TRUE statement about this solution is _____

а	The solution is acidic with a [H ₃ O ⁺ (aq)] of less than 10 ⁻⁷ mol/L
b	The solution is acidic with a [H₃O⁺(aq)] of greater than 10⁻¹ mol/L
С	The solution is basic with a [OH-(aq)] of less than 10 ⁻⁷ mol/L
d	The solution is basic with a [OH-(aq)] of greater than 10 ⁻⁷ mol/L

63. A lime pie has a pH of 1.2 The pie filling is _____

а	Highly acidic	
b Slightly acidic		
c Highly basic		
d Slightly basic		

64. A solution with a pH of 9.00 is _____ and has _____

а	Acidic	$[H_3O^+(aq)] = 10^{-9} \text{ mol/L}$
b	Basic	[OH ⁻ (aq)] = 10 ⁻⁹ mol/L
С	Acidic	[OH ⁻ (aq)] = 10 ⁻⁹ mol/L
d	Basic	[H ₃ O ⁺ (aq)] = 10 ⁻⁹ mol/L

65. A solution was made with 2.00 g of Na₂CO₃(s) dissolved in 100 mL of water. A 25.0 mL sample was then reacted with 15.5 mL of HCl(aq). What is the concentration of the acid?

а	0.258 mol/L
b	0.304 mol/L
С	0.609 mol/L
d	1.22 mol/L

66. What was the concentration of Na₂CO₃(aq) in question #65.

а	0.0189 mol/L	
b	0.0200 mol/L	
С	0.189 mol/L	
d	1.89 mol/L	

67. What volume of 0.24 mol/L sodium hydroxide solution is needed to neutralize 0.50 L of sulfuric acid with a pH of 1.83?

а	30.8 m
b	61.6 mL
С	92.4 mL
d	123 mL

68. Which statement is <u>TRUE</u> about decreasing the volume of a given amount of gas at a constant temperature in a container?

а	There are fewer molecules
b	The molecules are moving more slowly
С	The molecules are striking the container with increased force
d	There are more molecules

69. A gas mixture contains $O_2(g)$, $N_2(g)$, and CO(g). The total pressure of the three gases is 280 kPa. If the partial pressure of the $O_2(g)$ is 74 kPa and the partial pressure of the CO(g) is 88 kPa, then the partial pressure of the $O_2(g)$ is ______ kPa.

а	118		
b	128		
С	152		
d	162		

70. If 28 L of air at 30°C is warmed to 100°C, the new volume will be ____ L. Assume the pressure is held constant.

а	8.4
b	22.7
С	34.5
d	93.3

71. The boiling point of liquid nitrogen is -196°C.	An equivalent temperature on the Kelvin scale will be	Κ

а	-196
b	77
С	153
d	273

72. A balloon filled with helium increases in volume as it ascends to a higher altitude. The expansion of the balloon is primarily due to ______

а	A decrease in the number of molecules inside the balloon.
b	An increase in the average kinetic energy of the helium atoms inside the balloon
С	An increase in the rate of collisions of the atmosphere molecules on the outside walls of the balloon
d	A decrease in the rate of collisions of the atmosphere molecules on the outside walls of the balloon

73. An empty 2 L plastic milk container is rinsed out with hot water and then sealed. What will happen to the container if it is placed in a cool storage room for ten minutes

а	It will swell
b	The sides will collapse inwards
С	It will remain the same size
d	Its temperature will increase

74. At a constant pressure, what will happen to the temperature of a gas when the volume is increased?

а	It will increase
b	It will decrease
С	It will remain unchanged
d	The gas will solidify

75. Which change below will cause an increase in the pressure of a gaseous system?

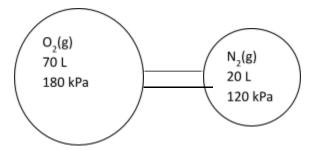
а	Increase the size of the container and reduce temperature	
b	Increase the temperature	
С	Release some gas from the container	
d	Reduce the temperature	

76. If the temperature of a gas is held constant, but the volume is reduced to one half, the pressure of the gas will

а	Be reduced by ½
b	Remain the same
С	Double
d	Quadruple

77. In the reaction below 10 moles of ammonia reacted with 8 moles of oxygen at STP. The excess reagent is

and it has	 moles left over


$$2NH_3(g) + \frac{5}{2}O_2(g) \square 2NO(g) + 3H_2O(l)$$

а	Oxygen	6.4
b	Oxygen	3.6
С	Ammonia	4.5
d	Ammonia	2.5

78. If the pressure of a gas in a rigid container at 200°C is 240 kPa, what will be the temperature of the gas when the pressure is reduced to 100 kPa? Express as $___$ °C

а	-76.0
b	83.3
С	197
d	480

79. If the valve between the two containers below is opened, what would be the total pressure of the mixed gases? Assume the temperature holds constant.

а	5.25 kPa
b	33.3 kPa
С	150 kPa
d	167 kPa

	and h	as a mass of	4.0 g, then the gas is
	_	Chlorine	
	a b		
	c	Nitroge	
	d		<u>'</u>
	Ľď	Олувен	
81.	Nume	rical respon	se question:
	Left ju	istify the an	swer in the boxes provided
			f a toxic compound is dissolved in 2.5 L of water. The concentration of this compound is
		ppm.	
82.	Nume	rical respon	se question
	Left ju	istify the an	swer in the boxes provided
			
		-	
			arge of 3+ is reduced to its metal by adding sufficient electrons. The number of electrons
	neede	ed per mole	of the cation will be
83.	Nume	rical respon	se question
	Laft iu	istify the an	swer in the boxes provided
	Left ju	istily the all	wer in the boxes provided
			<u> </u>
	The pi	ressure of 2	40 atm is equivalent to kPa.
84.	Nume	rical respor	se question
	Left ju	stify the an	swer in the boxes provided
			
			
	The m	ass of 0.50	mole of copper (II) sulfate pentahydrate is kg.

80. The gaseous product of a reaction was collected in a 4.0 L container at 27°C and 77.9 kPa. If the gas is diatomic

Chemistry 20 Final: Practice exam # 1

Page **16** of **21**

85.	Numerical	response	question
ω_{ω} .	- Tallici icai	COPULISC	question

Left justify the answer in the boxes provided

If 16 mol of oxygen gas at STP is reacted with 24 mol of hydrogen gas at STP to form water vapour, give the moles of excess reagent that is left over. Round the answer to the <u>nearest tenth</u>.

86. Numerical response question

Left justify the answer in the boxes provided

Consider the following oxidation reduction reaction

$$2AI^{3+}(aq) + 3Fe(s) \implies 3Fe^{2+}(aq) + 2AI(s)$$

The chemicals reagents from this reaction are assigned numbers as follows:

1	Al(s)
2	Fe(s)
3	Al ³⁺ (aq)
4	Fe ²⁺ (aq

In the first box, give the chemical reagent that undergoes reduction

In the second box, give the chemical reagent that undergoes oxidation

87. Numerical response question

Left justify the answer in the boxes provided

Samantha and Erin have a 500 mL sample of 0.0123 mol/L HCl(aq)

Express the concentration of $[OH^{-}(aq)]$ found in this solution in the form a.b x 10^{-cd}

	Left justify the answer in the boxes provided
	In the a molecule of HCN(g), there is/ are triple bonds, double bonds and single bond
89.	Numerical response question
	Left justify the answer in the boxes provided
	The number of moles of lithium nitrate found in 400 mL of 3.75 mol/L solution is mol.
90.	Numerical response question
	Left justify the answer in the boxes provided
	A 2.00 mL sample of nitrogen gas as STP is changed to 290 K and 120 kPa. The new volume of this gas will be mL
91.	Long answer: A 25.0 mL sample of 1.50 mol/L solution of barium nitrate and and a 30 mL sample of 2.50 mol/L solution of aluminium sulfate undergo a double replacement reaction
	i. Write the NON, total and Net ionic equations (3 marks)
	ii. Identify the limiting reagent and the excess reagent (2 marks)

88. Numerical response question

a.	What is the pH of the undiluted acid? (1 mark)
b.	What is the pH of the diluted acid? (2 marks)

c. Fill in the expected colors for the indicators given below (3 marks)

92. A 100 mL sample of 0.0340 mol/LHCl has 840 mL of water added to it.

Indicator	Color in Undiluted acid	Color in Diluted acid
H ₂ Cr		
HMv		

HOr

Answers:

Multiple choice questions (1 mark each = 80)

						_					
1	С	16	D	31	D	46	С	61	А	76	С
2	В	17	А	32	D	47	С	62	В	77	В
3	В	18	С	33	Α	48	Α	63	Α	78	Α
4	С	19	А	34	В	49	В	64	D	79	D
5	Α	20	D	35	В	50	D	65	С	80	D
6	D	21	Α	36	С	51	Α	66	С		•
7	В	22	D	37	Α	52	D	67	В		
8	С	23	В	38	С	53	D	68	С		
9	В	24	С	39	D	54	Α	69	Α		
10	В	25	В	40	С	55	С	70	С		
11	С	26	D	41	С	56	В	71	В		
12	С	27	В	42	С	57	С	72	D		
13	Α	28	С	43	В	58	Α	73	В		
14	D	29	D	44	А	59	С	74	Α		
15	В	30	С	45	D	60	D	75	В		

Numerical response questions (1 mark x 10 = 10)

81	29	86	32
82	3	87	8113
83	243	88	101
84	0.12	89	1.50
85	4.0	90	1.79

Long answer:

91. a) Non
$$3Ba(NO_3)_2(aq) + Al_2(SO_4)_3(aq) \rightarrow 3BaSO_4(s) + 2Al(NO_3)_3(aq)$$

Total $3Ba^{2+}(aq) + 6NO_3^{-}(aq) + 2Al^{3+}(aq) + 3SO_4^{2-}(aq) \rightarrow 3BaSO_4(s) + 2Al^{3+}(aq) + 6NO_3^{-}(aq)$
NET $3Ba^{2+}(aq) + 3SO_4^{2-}(aq) \rightarrow 3BaSO_4(s)$

b) Moles of
$$Ba(NO_3)_2(aq) = 0.0375$$

moles of $Al_2(SO_4)_3(aq) = 0.075$ mol
Limiting reagent = $Ba(NO_3)_2(aq)$
Excess reagent = $Al_2(SO_4)_3(aq)$

92. pH of undiluted acid = 1.469 pH of diluted acid 2.442

Indicator	Color in Undiluted acid	color in Diluted acid
H ₂ Cr	Yellow	yellow
HMv	Green	blue
HOr	orange	orange