Acids and Bases: Stoichiometry

1. The [OH⁻(aq)] in a solution made by mixing 50.0 mL of 0.100 mol/L HCl(aq) with 200 mL of 0.300 mol/L NaOH(aq) is ______ mol/L

а	0.240
b	0.0400
С	0.275
d	0.220

2. When 100 mL of 1.00 mol/L HCl(aq) is added to 100 mL of 2.00 mol/L NaOH(aq), the final mixture has

_____·

а	pH greater than 7
b	pH less than 6
С	[OH⁻(aq)] that is equal to [H₃O⁺(aq)]
d	[OH⁻(aq)] that is less than [H₃O⁺(aq)]

3. A 900 mL sample of 1.80 mol/L HCl(aq) solution is added to 300 mL of 0.400 mol/L NaOH(aq) solution. The resulting $[H_3O^+(aq)]$ is _____ mol/L

а	1.25
b	0.925
С	0.300
d	0.120

4. If 200 mL of 0.300 mol/L HCl(aq) is added to 300 mL of 0.150 mol/L NaOH(aq) then the equilibrium [$H_3O^{\dagger}(aq)$] is _____ mol/L.

а	0.0150
b	0.0300
С	0.0500
d	0.0750

5. A 20.0 mL sample of 0.300 mol/L NaOH(aq) is required to completely react with 30.0 mL of $HNO_3(aq)$. The concentration of the nitric acid is _____ mol/L

а	2.56
b	1.56
С	0.450
d	0.200

6. Chromium(VI) oxide is used to form the highly acidic "chromic acid" in chromium plating solution. Production of "chromic acid" is

$$2 \text{ CrO}_3(s) + \text{H}_2\text{O}(l) \rightarrow \text{H}_2\text{Cr}_2\text{O}_7(aq)$$

The "chromic acid" ionizes completely in water according to the following reaction.

$$H_2Cr_2O_7(aq) + H_2O(I) \rightarrow H_3O^+(aq) + HCr_2O_7^-(aq)$$

What is the pH in a chromium plating solution in a 1.00 kL tank when 24.0 g/L of CrO₃(s) is dissolved?

а	0.620
b	0.958
С	-0.380
d	0.544

7. Which 50.0 mL solution requires the greatest volume of 0.100 mol/L HCl(aq) to completely react with it?

а	0.100 mol/L NaOH(aq)
b	0.100 mol/L NH ₃ (aq)
С	0.100 mol/L Ba(OH) ₂ (aq)
d	0.100 mol/L HOOCCOOH(aq)

8. A hydrochloric acid solution(HCl(aq)) is standardized using pure $Na_2CO_3(s)$ as the primary standard. If 30 mL of the acid is required to react completely with a 0.50 g sample of $Na_2CO_3(s)$, what is the pH of the HCl(aq)?

а	2.02
b	1.10
С	0.80
d	0.50

9. During a titration, a 25 mL sample of HCl(aq) of unknown concentration was titrated with 0.20 mol/L NaOH(aq). The equivalence point was reached after 21 mL of NaOH(aq) were added. The concentration of the HCl(aq) was calculated and found to be _____ mol/L

а	0.010
b	0.17
С	0.20
d	0.25

10. A 275 mL sample of 0.400 mol/L HCl was titrated with 100 mL of KOH(aq) to reach the endpoint. The concentration of the KOH(aq) was ____ mol/L

а	0.400
b	0.800
С	1.10
Ч	2 20

11. A student titrates 10.0 mL of $H_2SO_4(aq)$ solution with 0.020 mol/L of NaOH(aq) solution. If 30.0 mL of NaOH(aq) are required to completely neutralize the solution, the concentration of the acid is _____ mol/L

а	6.0 x 10 ⁻²
b	3.0 x 10 ⁻²
С	6.0 x 10 ⁻¹
d	3.0 x 10 ⁻¹

12. The volume of 0.40 mol/L KOH(aq) that is required to neutralize 0.080 L of 0.20 mol/L HNO₃(aq) is _____ L

а	0.202
b	0.040
С	0.080
d	0.16

13. A 0.409 g sample of impure methanoic acid (HCOOH(aq)) was titrated with a 0.100 mol/L NaOH(aq). It required 50.0 mL of the NaOH(aq) solution to neutralize the acid. What percent (by mass) of the sample was methanoic acid?

а	0.312 %
b	0.642 %
С	28.1 %
d	56.3 %

14. A volume of ____ mL of 2.00 mol/L H₂SO₄(aq) would be needed to react completely with 4.20 g of NaOH(s).

а	26.3
b	52.2
С	105
d	420

15. The volume of 0.100 mol/L NaOH(aq) required to neutralize 1.00 L of a strong monoprotic acid solution with a pH of 3.00 is ______ mL

а	10.0
b	333
С	1.00 x 10 ³
d	100

16. The volume of 2.0 mol/L HCl(aq) that will take 30 mL of 1.5 mol/L K₂SO₃(aq) to completion is _____ mL

а	23
b	45
С	30
d	11

17. A 10 mL sample of HCl(aq) with a pH of 1.50 is reacted with 0.025 mol/L Ba(OH) $_2$ (aq). The volume of Ba(OH) $_2$ (aq) needed to take the reaction to completion is ___ mL

а	10
b	5.0
С	13
d	6.3

Solutions:

- 1. D
- 2. A
- 3. A
- 4. B
- 5. D
- 6. A
- 7. C
- 8. D
- 9. B
- 10. C 11. B
- 12. B
- 13. D
- 14. A
- 15. A
- 16. B
- 17. D