Organic: Reactions

1.	Chlorine gas, $\text{Cl}_{2(g)}$, is reacted with several hydrocarbons. When reacted with, one of the products of the reaction will be hydrogen chloride, $\text{HCl}_{(g)}$, one of the products of the	
	a)	C ₃ H ₆	b) C ₅	Н.			
	c)	C ₅ H ₁₀	d)					
2.		A few drops of bromine, $Br_{2(i)}$, is added to each of the following hydrocarbons. The color of the bromine would disappear the most quickly in						
	a) c)	$C_4H_{10} \\ C_7H_{14}$	b) d)		H ₆ H ₁₈			
3.	It was	Chemical properties of an unknown organic compound were tested with bromine and potassium permanganate solution. It was found that the <u>unknown compound</u> decolorized potassium permanganate solution and gave a non- acidic product with bromine. The unknown organic compound was most likely						
	a)	2-methyl butane						
	b)	3,3-diethyl octane						
	c)	hex- 2- ene						
	d)	benzene						
4.	Giver	Given 1.0 mol of each substances below, the compound that would require the most Br _{2(l)} for an addition reaction is						
	a)	C_4H_{10}	b) C ₅	H ₁₂			
	c)	C_6H_{10}	ď		H ₁₄			
5. 1	he esteri	ification of propanol with	n butanoic acid fo	orms		and		
	a)	Butylpropanoate	water					
	b)	Propylbutanoate	water					
	c)	Butylpropanone	Hydrogen					
	d)	Propylbutenoate	hydrogen					
		has been asked to prepare	with		ficial ora	ange flavour. The stud	lent could prepare the	
	a)	Heptanol	Ethanoic a					
	b)	Octanol	Ethanoic a					
	c)	Ethanol	Octanoic a					
	d) Octanol Methanoic acid		ic acid					
7. E	thanol is	a byproduct of the prod	ess of	, where		reacts with	·	
	a)	Hydrogenation	Ethane	Hydro	gen	7		
	b)	Hydration	Ethene	Water		7		
	c)	Hydrogenation	Ethene	Hydro		7		
	d)	Hydration	Ethane	Water	_	7		
	_ ~/	1 1	1 = 5.1.5.1.0	,,,,,,,		_		

8.	Conside	er the following addition reaction.	CH ₃ CHCHCH ₂ CH ₃ + Cl ₂ →		
	The exp	ected product(s) is/are			
	a) b) c) d)	2-chloropentane and hydrogen chloride 3,4-dichloropentane 2,3-dichloropentane 2-chloropent-3-ene and hydrogen chlori	de		
9.	The mo	st likely species to undergo a substitution	reaction would be	_	
	a) b) c) d)	2-methyl-prop-1-ene o-dimethylbenzene acetylene but-2-yne			
10.	The mo	st likely species to undergo an <u>addition</u> re	eaction would be		
	a) b) c) d)	benzoic acid 2-methylpropane propyne propan-1,2-diol			
11.	Name t	he most likely product(s) for the following	reaction.		
	CH ₃ CH ₂	CH ₃ + Cl ₂ →			
	a) b) c) d)	1,2-dichloropropane and hydrogen 1-chloropropane and hydrogen 2-chloropropane and hydrogen chloride 3-chloroprop-1-ene and hydrogen chlori	de		
12.	The most likely species to undergo a substitution reaction would be				
	a) b) c) d)	3-methylpent-1ene 2,3 - dimethylbutane 1,1-dichlorobut-2-yne octa-1,3-diene			
13.	The most likely species to undergo an <u>addition reaction</u> would be				
	a) b) c) d)	p-chlorofluorobenzne 2-phenylpropane propyne propan-1,2-diol			

14.	Compounds that will undergo addition reactions are:					
	a)	alcohols and alkanes				
	b)	alkenes and alkynes				
	c)	aromatics and alkanes				
	,	esters and aromatics				
	ω _γ	esters and aromatics				
15.	If an alk	ene undergoes <u>hydrati</u>	on it will formwhereas when it undergoes hydrogenation it will form a(n)			
	a)	alkane, alcohol				
	b)	alkyne, acid				
	c)	aromatic, alcohol				
	d)	alcohol, alkane				
16.	The organic compound that will undergo an addition reaction with $F_{2(g)}$ is					
		C_4H_8				
		C_6H_6				
	c)	CCI ₄				
	d)	CH₃COOH				
17.	The ester ethylmethanoate is formed by the reaction between the alcohol and the carboxyllic acid					
	a)	ı) C ₂ H ₅ OH, HCOOH				
	b)	CH₃OH, CH₃OOH				
	c)	C₂H₅OH, CH₃COOH				
	d)	CH₃OH, HCOOH				
18.	Conside	er the incomplete reacti	on as follows: $C_2H_{4(g)} + Br_{2(l)} \rightarrow \underline{product}$			
	This is a	n(n) reaction	and the product(s) will be			
	а	Addition	Bromoethane and hydrogen bromide			
	b	Addition	1,2-dibromoethane			
	С	Substitution	Bromoethane and hydrogen bromide			
	d	substitution	1,2-dibromoethane			
19.	A sample of propene undergoes a reaction with chlorine.					
	The reaction will be called a(n) reaction, and the product(s) will be					
	a)	a) substitution, 1-chloropropane and hydrochloric acid				
	b)					
	c)	substitution, 1,2-dichl				
	d)	d) addition, 1,2-dichloropropane				

20.	Conside	er the diagram below. It is formed by the addition of a	ınd		
	CH ₃ COOCH ₂ CH ₂ CH ₂ CH ₃				
	a)	hexanoic acid, water			
	b)	butanol, ethanoic acid			

- The chemical below that is most likely to undergo an addition reaction with $\mathrm{Br}_{2(l)}$ is 21.
 - a) benzene
 - b) fluoroethane

c) ethanol, butanoic acid d) propanol, water

- c) acetylene
- d) ethanol
- 22. Consider the reactions in the table below.

prop-1-ene + chlorine → 1,2-dichloropropane
ethanol → ethene + water
ethane + fluorine → fluorethane + hydrogen fluoride
benzene + bromine →bromobenzene + hydrogen bromide
Methanol + Ethanoic acid → methylethanoate + water

There is / are _____ addition reaction(s) given in the table above.

a) 1

b) 2

c) 3

23.	Numerical	response	question
-----	-----------	----------	----------

Left justify your answer in the boxes provided.

Jake just bought a propane-fuelled mini-bus. The combustion of propane can be written as:

$$\underline{a} C_3 H_{8(g)} + \underline{b} O_{2(g)} \Rightarrow \underline{c} CO_{2(g)} + \underline{d} H_2 O_{(g)}$$

Balance the equation with the lowest possible whole numbers and record the values of 'a,b,c,d' in that order

24. Numerical response question

Left justify your answer in the boxes provided.

Colin mixed a sample of Ethanoic acid and methanol in the presence of a catalyst. Identify the product(s) for this esterification reaction. Record the answers in ascending order:

- 1. Ethyl methanoate
- 2. Methyl ethanoate
- 3. Water
- 4. Ethyl ethanoate
- 5. Methyl methanoate

Solutions:

- 1. D
- 2. C
- 3. C
- 4. C
- 5. B
- 6. B
- 7. B
- 8. C
- 9. B
- 10. C
- 11. C
- 12. B
- 13. C
- 14. B
- 15. D
- 16. A
- 17. A 18. B
- 19. D
- 20. b
- 21. C
- 22. A
- 23. 1534
- 24. 23