Chemistry 30 Introductory Redox Lab Teacher notes and answers

Name	Date	Score

Purpose:

- To predict whether redox reactions are spontaneous or not
- To compare the relative tendency of metals and their metallic ions to react with each other.

Prelab:

1. Copper strip in solution of iron (III) nitrate

$$E^{o} = 0.43 \text{ V}$$

2. Copper strip in solution of nickel (II) nitrate

$$Ni^{2+} + Cu \rightarrow Ni + Cu^{2+}$$

$$E^{\circ} = -0.60 \text{ V}$$

3. Copper strip in solution of zinc sulfate

$$Zn^{2+} + Cu \implies Zn + Cu^{2+}$$
 $E^{\circ} = -1.10 \text{ V}$

$$E^{\circ} = -1.10 \text{ V}$$

4. Copper strip in solution of copper (II) sulfate

$$E^{\circ} = 0.00 \text{ V}$$

5. Zinc strip in solution of copper (II) nitrate

$$E^{o} = 1.10 V$$

6. Zinc strip in solution of nickel (II) nitrate

$$Zn + Ni^{2+} \rightarrow Ni + Zn^{2+}$$
 E° = 0.50 V

$$E^{\circ} = 0.50 \text{ V}$$

7. Zinc strip in solution of iron (III) nitrate

$$Zn + 2Fe^{3+} \rightarrow 2Fe^{2+} + Zn^{2+}$$
 $E^{\circ} = 1.53 \text{ V}$

$$E^{\circ} = 1.53 \text{ V}$$

8. Zinc strip in solution of zinc sulfate

$$Zn + Zn^{2+} \rightarrow Zn + Zn^{2+}$$

$$E^{\circ} = 0.00 \text{ V}$$

9. Nickel strip in solution of copper (II) nitrate

$$E^{o} = 0.43 \text{ V}$$

10. Nickel strip in solution of iron (III) nitrate

Ni +2 Fe³⁺
$$\rightarrow$$
 Ni²⁺ + 2Fe²⁺

$$E^{o} = 1.03 V$$

11. Nickel strip in solution of zinc sulfate

$$Ni + Zn^{2+} \rightarrow Zn + Ni^{2+}$$

$$E^{\circ} = -0.50 \text{ V}$$

12. Nickel strip in solution of nickel (II) nitrate

$$Ni + Ni^{2+} \rightarrow Ni + Ni^{2+}$$

$$E^{\circ} = 0.00 \text{ V}$$

13. Iron strip in solution of copper (II) nitrate

Fe +
$$Cu^{2+}$$
 \rightarrow $Cu + Fe^{2+}$

$$E^{\circ} = 0.79 \text{ V}$$

14. Iron strip in solution of zinc sulfate

Fe +
$$Zn^{2+} \rightarrow Fe^{2+} + Zn$$

$$E^{\circ} = -0.31 \text{ V}$$

15. Iron strip in solution of nickel (II) nitrate

Fe + Ni²⁺
$$\rightarrow$$
 Ni + Fe²⁺

$$E^{\circ} = 0.19 \text{ V}$$

16. Iron strip in solution of iron (III) nitrate

Fe + 2Fe³⁺
$$\rightarrow$$
 Fe²⁺ +2 Fe²⁺ E° 1.22 V

Metal / solution	Cu ²⁺	Zn ²⁺	Ni ²⁺	Fe³+
Cu _(s)	Nothing	Nothing	Nothing	Colour change
Zn(s)	Colour change	Nothing	Colour change	Colour change
Ni(s)	Colour change	Nothing	Nothing	Colour change
Fe(s)	Colour change	Nothing	Colour change	Colour change

Questions:

- 1. Write a generalization about the likelihood of a reaction between a metal and its own aqueous ion?
 - Generally a metal and its ion will have NO reaction
- 2. Is the answer to question one dependent upon whether the metal has more than one ion charge? Why or why not? (Hint → you have three 'two charge' metals Ni, Fe, Cu. Explore your data booklet for some help!
 - Multi charge ions like iron will have a reaction when you have the metal and the larger of the ion charges.
- 3. When metallic ions want to form metals, they are undergoing Reduction. List the metallic ions in order of their tendency to form metals. Start with the most likely one! Fe³⁺, Cu²⁺, Ni²⁺, Zn²⁺
- 4. When metals want to form their metallic ions, they are undergoing oxidation. List the metals in order of their tendency to form metallic ions. Start with the most likely one. Zn, Fe, Ni, Cu

Introductory Redox Lab

5. For the mixtures below, write the expected redox reaction. Be sure to give voltage and expected colours for reactants and products. Identify the oxidizing agent (OA) and the reducing agent (RA)

Hydrochloric acid, potassium bromide solution, manganese (IV) oxide crystals and copper strips

```
Reduction half reaction MnO_2 + 4H^+ + 2e^- \rightarrow Mn^{2+} + 2H_2O \qquad E^\circ = 1.22V Oxidation half reaction Cu \rightarrow Cu^{2+} + 2e^- \qquad E^\circ = -0.34V Redox reaction 2MnO_2 + 4H^+ + Cu \rightarrow Mn^{2+} + Cu^{2+} + 2H_2O \qquad E^\circ = 0.88 \ V Pale pink Blue
```