Tables for Oxidation Reduction

1. Consider the following reactions.

$$Ce^{3+}(aq) + 3e^{-} \rightarrow Ce(s)$$
 $E^{\circ} = -2.34 \text{ V}$
 $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $E^{\circ} = -0.91 \text{ V}$

When a spontaneous electrochemical cell is constructed on the basis of the following two half-reactions, the oxidizing agents will gain _____.

а	six less electrons than the reducing agent gains
b	two more electrons than the reducing agent loses
С	three more electrons than the reducing agent loses
d	the same number of electrons as the reducing agent loses

2. Consider the following reactions.

$$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$$
 $E^\circ = 1.36 \text{ V}$
 $Fe^{3+}(aq) + e^- \rightarrow Fe^{2+}(aq)$ $E^\circ = 0.77 \text{ V}$
 $Cr^{2+}(aq) \rightarrow Cr^{3+}(aq) + e^ E^\circ = 0.41 \text{ V}$
 $Zn^{2+}(aq) + 2e^- \rightarrow Zn(s)$ $Eo = -0.76 \text{ V}$

Which chemical species loses electrons?

а	Cl ₂ (g)	
b	Fe ³⁺ (aq)	
C	Cr ²⁺ (aq)	
d	Zn ²⁺ (aq)	

3. Which half-reaction has a negative E° value?

а	$Fe^{2+}(aq) \rightarrow Fe^{3+}(aq) + e^{-}$
b	$Br_2(I) + 2e^- \rightarrow 2Br^-(aq)$
С	$Au^{3+}(aq) + 3e^{-} \rightarrow Au(s)$
d	$Cr(s) \rightarrow Cr^{2+}(aq) + 2e^{-}$

4. Which of these would react spontaneously with Co(s) but **NOT** with H₂(g)?

а	H ₂ O(I)	
b	Ni ²⁺ (aq)	
С	Ca ²⁺ (aq)	
d	Br⁻(aq)	

5. Brad and Charles observed the reactions between four different metals and the solutions of their metallic ions. The boys recorded these "spontaneous" reactions.

Reaction	
I	$W(s) + X^{+}(aq) \rightarrow W^{+}(aq) + X(s)$
II	$X(s) + Y^{\dagger}(aq) \rightarrow X^{\dagger}(aq) + Y(s)$
III	$Y(s) + Z^{+}(aq) \rightarrow Y^{+}(aq) + Z(s)$
IV	$Z(s) + W^{+}(aq) \rightarrow Z^{+}(aq) + W(s)$
V	$X(s) + Z^{+}(aq) \rightarrow X^{+}(aq) + Z(s)$

If **equation I** is correct, which equation did the student record **incorrectly**?

а	П
b	Ш
С	IV
d	٧

6. Consider the following reactions.

$$2A^{+}(aq) + Mg(s) \rightarrow Mg^{2+}(aq) + 2A(s)$$
 E° = 2.60 V

$$B(s) + Cd^{2+}(aq) \rightarrow Cd(s) + B^{2+}(aq)$$
 $E^{\circ} = 0.63 \text{ V}$

The E° for the reaction $2A^+(aq) + B(s) \rightarrow B^{2+}(aq) + 2A(s)$ is ______ V

а	3.23
b	1.97
С	1.26
d	0.80

7. Consider the following reactions

Ir(s) +3 Tl ⁺ (aq) → Ir ³⁺ (aq) + 3Tl(s)	Negative E°
$Ir^{3+}(aq) + Rh(s) \rightarrow Ir(s) + Rh^{3+}(aq)$	Negative E°
3TI ⁺ (aq) + Y(s) → 3TI(s) + Y ³⁺ (aq)	Positive E°

In these reactions, the **strongest oxidizing agent** is _____

а	Tl ⁻ (aq)	
b	Y ³⁺ (aq)	
С	Ir ³⁺ (aq)	
d	Rh ³⁺ (aq)	

8. Consider the following reaction

$$Cu^{2+}(aq) + X(s) \rightarrow Cu(s) + X^{2+}(aq)$$
 E° = 1.10 V

Element X(s) is _____

а	Al(s)
b	Ca(s)
С	Zn(s)
d	Ag(s)

9. Which process could cause X²-(aq) to change to X⁻(aq)?

а	$Z(s) \rightarrow Z^{3-}(aq)$
b	$Z(s) \rightarrow Z^{3+}(aq)$
С	$Z^{2-}(aq) \rightarrow Z(s)$
d	Z³-(aq) → Z(s)

10. The reaction $A^{2+}(aq) + X(s) \rightarrow A(s) + X^{2+}(aq)$ proceeds spontaneously.

The elements A(s) and X(s) could be _____ and ____respectively.

а	Cr(s)	Co(s)
b	Pb(s)	Cu(s)
С	Co(s)	Cu(s)
d	Ni(s)	Zn(s)

11. The substance that would oxidize Fe(s) to Fe²⁺(aq) in a neutral solution is ______

а	AgNO₃(aq)
b	NaNO₃(aq)
С	LiNO ₃ (aq)
d	KNO₃(aq)

12. Which reactants will result in a **spontaneous reaction**?

а	$Fe^{2+}(aq) + Pb^{2+}(aq)$
b	$Cr^{2+}(aq) + Zn^{2+}(aq)$
С	$Sn^{2+}(aq) + I_2(s)$
d	Na ⁺ (aq) + Ni(s)

13. Consider the oxidation potential table given below.

C(s) → C ³⁺ (aq) + 3e ⁻	E° = +1.80 V
D(I) → D ²⁺ (aq) + 2e ⁻	E° = +0.35 V
A ²⁺ (aq) → A ⁴⁺ (aq) + 2e ⁻	E° =-0.25 V
2B ⁻ (aq) → B ₂ (g) + 2e ⁻	E° = -1.25 V

The strongest oxidizing agent in this table is

а	C(s)
b	B ₂ (g)
С	A ⁴⁺ (aq)
d	D ²⁺ (aq)

14. Zinc metal will <u>not spontaneously act</u> as a reducing agent for which group of chemical agents?

а	Fe ²⁺ (aq) , H ⁺ (aq), Cu ²⁺ (aq)
	Co ²⁺ (aq), Sn ²⁺ (aq), Pb ²⁺ (aq)
С	Cu ²⁺ (aq), Hg ²⁺ (aq), Br ₂ (l)
d	Ca ²⁺ (aq), Na ⁺ (aq), Mn ²⁺ (aq)

15. The standard electrode potential for the conversion of $\operatorname{Sn}^{2+}(aq)$ to $\operatorname{Sn}^{4+}(aq)$ is ____ V

а	+0.15
b	-0.14
С	-0.15
d	+0.14

16. Consider the following spontaneous reactions,

$$X^{2+}(aq) + Y(s) \rightarrow Y^{2+}(aq) + X(s)$$

$$X^{2+}(aq) + Q(s) \rightarrow X(s) + Q^{2+}(aq)$$

$$Y^{2+}(aq) + Z(s) \rightarrow Y(s) + Z^{2+}(aq)$$

$$Z^{2+}(aq) + Q(s) \rightarrow Z(s) + Q^{2+}(aq)$$

Based on this information, the strongest oxidizing agent is ____

a	Q ²⁺ (aq)
b	X ²⁺ (aq)
С	Z ²⁺ (aq)
d	Y ²⁺ (aq)

17. Consider the following spontaneous reactions,

$$X^{2+}(aq) + Y(s) \rightarrow Y^{2+}(aq) + X(s)$$

$$X^{2+}(aq) + Q(s) \rightarrow X(s) + Q^{2+}(aq)$$

$$Y^{2+}(aq) + Z(s) \rightarrow Y(s) + Z^{2+}(aq)$$

$$Z^{2+}(aq) + Q(s) \rightarrow Z(s) + Q^{2+}(aq)$$

Based on this information, the strongest reducing agent is

а	Q(s)
b	X (s)
С	Z(s)
d	Y(s)

18. Given the reaction $2NO_3^{-1}(aq) + 4H^{+}(aq) + X(s) \rightarrow 2H_2O(I) + N_2O_4(g) + X^{2+}(aq)$ $E^{\circ} = +2.18 \text{ V}$

The standard electrode potential for the half-reaction $X^{2+}(aq) + 2e^{-} \rightarrow X(s)$ is ____ V

а	+2.98
b	+1.38
С	-1.38
d	-2.98

19. Given the reaction $2NO_3^{-}(aq) + 4H^{+}(aq) + X(s) \rightarrow 2H_2O(I) + N_2O_4(g) + X^{2+}(aq)$ E° = +2.18 V

The standard electrode potential for the half-reaction $X(s) \rightarrow X^{2+}(aq) + 2e^{-}$ is ____ V

а	+2.98
b	+1.38
С	-1.38
d	-2.98

20. Which process listed below could NOT cause M³+(aq) to change to M₂(g)

а	$R(s) \rightarrow R^{2-}(aq)$
b	D ²⁻ (aq) → D ⁺ (aq)
С	T (aq) → T(s)
d	L³-(aq) → L-(aq)

21. A true statement that can be made from a reading of the standard electrode potentials table is that ______

а	silver bromide gains electrons more readily than hydrogen ions do
b	hydrogen ions gain electrons more readily than silver bromide do
С	hydrogen gas loses electrons more readily than cadmium metal do
d	hydrogen gas gains electrons more readily than silver bromide do

22. Jason and Cliff use the following data to build a reduction table.

L ⁺ + Z ⁻ → L + Z	Spontaneous reaction
$Q^{2+} + 2Z^{-} \rightarrow Z + 2Z$	Spontaneous reaction
M³+ + 3Z⁻ → M + 3Z	Non spontaneous reaction
2L ⁺ + Q → 2L + Q ²⁺	Non spontaneous reaction

The strongest oxidizing agent in their table will be _____

а	Z
b	Q ²⁺
С	M ³⁺

23. Jason and Cliff use the following data to build a reduction table.

L ⁺ + Z ⁻ → L + Z	Spontaneous reaction
$Q^{2+} + 2Z^{-} \rightarrow Z + 2Z$	Spontaneous reaction
M³+ + 3Z⁻ → M + 3Z	Non spontaneous reaction
2L ⁺ + Q → 2L + Q ²⁺	Non spontaneous reaction

The strongest reducing agent will be _____

а	Z	
b	Q	
С	М	
d	L	

24. Sue and Amy use the following data to build a reduction table. Each reaction is listed as spontaneous or non spontaneous.

	R ³⁺	J	X ²⁺	L ⁺
R ²⁺	Non spontaneous	Spontaneous	Non spontaneous	Non spontaneous
J ⁻	Non spontaneous	Non spontaneous	Non spontaneous	Non spontaneous
Х	Spontaneous	Spontaneous	Non spontaneous	Non spontaneous
L	Spontaneous	Spontaneous	Spontaneous	Non spontaneous

The oxidizing agents, listed from the strongest to the weakest will be ____, ____, and _____.

а	L ⁺	X ²⁺	R ³⁺	J
b	J ⁻	R ²⁺	Х	L
С	L	Х	R ²⁺	J
d	J	R ³⁺	X ²⁺	L ⁺

25. Sue and Amy use the following data to build a reduction table. Each reaction is listed as spontaneous or non spontaneous.

	R ³⁺	J	X ²⁺	L ⁺
R ²⁺	Non spontaneous	Spontaneous	Non spontaneous	Non spontaneous
J ⁻	Non spontaneous	Non spontaneous	Non spontaneous	Non spontaneous
Х	Spontaneous	Spontaneous	Non spontaneous	Non spontaneous
L	Spontaneous	Spontaneous	Spontaneous	Non spontaneous

The <u>reducing agents</u>, listed from the <u>strongest to the weakest</u> will be ____, ____, and _____.

а	L ⁺	X ²⁺	R ³⁺	J
b	J	R ²⁺	X	L
С	L	Х	R ²⁺	J ⁻

d	J	R ³⁺	X ²⁺	L ⁺

26. **Numerical response question** Left justify your answer in the boxes provided.

Students make the following observations for a series of electrochemical cells

		5	6	7	8
		Be ²⁺	Cd ²⁺	Ra ²⁺	V ²⁺
1	Be _(s)	Х	~	х	V
2	Cd _(s)	Х	Х	х	Х
3	Ra _(s)	~	~	х	V
4	V _(s)	Х	>	Х	Х

- ✔ Indicates a spontaneous reaction
- X Indicates a non-spontaneous reaction

Using the assigned numbers from 1 to 8, list the <u>oxidizing agents</u> in order from <u>strongest</u> to <u>weakest</u>.

27. Numerical response question Left justify your answer in the boxes provided.

Students make the following observations for a series of electrochemical cells

		1	2	3	4
		A ⁺ _(aq)	B ⁺ _(aq)	C ⁺ (aq)	D ⁺ _(aq)
5	A _(s)	Х	٧	Х	>
6	B _(s)	Х	Х	Х	Х
7	C _(s)	~	~	х	V
8	D _(s)	Х	~	х	Х

- ✔ Indicates a spontaneous reaction
- X Indicates a non-spontaneous reaction

Us	Using the assigned numbers from 1 to 8, list the <u>reducing agents</u> in order from <u>strongest to weakest.</u>						
 	,		_ ISA MIJASTİ	on Left iu	stify you	r answei	in the boxes provided.
.0. 141		ai respon		on Lent ju		T answei	in the boxes provided.
<u> </u>							
S	tudent	ts make th	ne followi	ng observ	ations fo	r a serie	s of electrochemical cells
			1	2	3	4	
			A ⁺ _(aq)	B ⁺ _(aq)	C ⁺ _(aq)	D ⁺ _(aq)	
	5	A _(s)	Х	Х	х	-	

~	Indicates a spontaneous read	tion
---	------------------------------	------

X

6

7

8

 $B_{(s)}$

 $C_{(s)}$

D_(s)

X Indicates a non-spontaneous reaction

X

X

X

X

X

Using the assigned numbers from 1 to 8	list the reducing agents ir	n order from <u>strongest</u>	to weakest.
		-	

Χ

29. **Numerical response question** Left justify your answer in the boxes provided.

Consider the following half reactions:

Number	Half reaction	voltage
1	$Fe^{2+}_{(aq)} + 2e^{-} \rightarrow Fe_{(s)}$	E° = -0.45 V
2	$Br_{2(I)} + 2e^{-} \rightarrow 2Br_{(aq)}$	E° = +1.07 V
3	$Au^{3+}_{(aq)} + 3e^{-} \rightarrow Au_{(s)}$	E° = +1.50 V
4	$Li^{+}_{(aq)} + e^{-} \rightarrow Li_{(s)}$	E° = -3.04 V

List the oxidizing agents from weakest to strongest: ____, ___, ____, ____

30	Numerical	response question	Left justify your	answer in the	haves provided
3U.	Numericai	response duestion	Left justify your	answer in the	poxes provided.

l	
l	

Calculate the cell potential for the following oxidation - reduction reaction.

$$3Cd^{2+}_{(aq)} + 2AI_{(s)} \rightarrow 2AI^{3+}_{(aq)} + 3Cd_{(s)}$$

Express the answer as shown below:

31. **Numerical response question** Left justify your answer in the boxes provided.

1		
1		
1		

The cell potential for the oxidation - reduction reaction represented by the two half reactions given below is $___$ V

$$Au^{3+}_{(aq)} + 3e^{-} \rightarrow Au_{(s)}$$

$$Al_{(s)} \rightarrow Al_{(aq)}^{3+} + 3 e^{-}$$

Solutions:

- 1. D
- 2. C
- 3. A
- 4. B
- 5. C
- 6. C
- 7. D
- 8. C
- 9. A
- 10. D
- 11. A
- 12. C
- 13. B
- 14. D
- 15. C
- 16. B
- 17. A
- 18. C
- 19. B
- 20. A
- 21. A
- 22. B
- 23. C
- 24. D
- 25. C
- 26. 6857
- 27. 7586
- 28. 6758
- 29. 4123
- 30. 1126
- 31. 3.16