Reference Points

1. If the reference point for electrode potentials is changed so that the reduction of $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ represents $E^{\circ} = 0.00 \text{ V}$, then the electrode potential for the reduction of $Br_2(I) + 2e^{-} \rightarrow 2Br^{-}(aq)$ will be

а	+0.26	
b	+0.81	
С	+1.07	
d	+1.33	

2. If the reduction of iodine had been selected as the standard half- reaction, then the E° for the reduction of PbSO₄(s) would be _____ V

а	-0.90
b	+0.90
С	-0.18
d	+0.18

3. Scientists Tom and Janel rewrite the reduction table in the data booklet. They choose the half reaction $I_2(s) + 2e^- \rightarrow 2I^-(aq)$ as the new reference point.

Based on this new reference point, choose the **true** statement below is _____.

а	$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	E° = -0.67 V
b	$2F^{-}(aq) \rightarrow F_{2}(g) + 2e^{-}$	E° = +2.33 V
С	Fe ²⁺ (aq) → Fe ³⁺ (aq) + e ⁻	E° = +1.31 V
d	$Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$	E° = -0.37 V

4. Eli and Grayson choose a new reference point for the reduction table.
They decide that PbsO₄(s) 2e⁻ → Pb(s) + SO₄²⁻(aq) will have an electrical potential of 0.0V
Using this new reference point they calculate the expected electrical potential for a series of reactions.

	Reaction	Voltage
1	$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	0.20 V
2	$I_2(s) + Cu(s) \rightarrow 2I(aq) + Cu^{2+}(aq)$	0.20 V
3	$NO(g) + 2OH^{-} \rightarrow NO_{2}(aq) + H_{2}O(l) + e^{-}$	0.20 V
4	$3N_2O(g) + 6H_2O(l) + 4Au^{3+}(aq) $ 2 $6HNO_3(aq) + 12H^+(aq) + 4Au(s)$	0.20 V
5	2Na ⁺ (aq) + Ba(s) → Ba ²⁺ + 2Na(s)	0.20 V

Which statements above are **FALSE**?

а	1,2,3
b	2,4,5
С	3,5
d	1,3

5. Eli and Grayson choose a new reference point for the reduction table.

They decide that $PbsO_4(s) 2e^- \rightarrow Pb(s) + SO_4^{2-}(aq)$ will have an electrical potential of 0.0V Using this new reference point they calculate the expected electrical potential for a series of reactions.

	Reaction	Voltage
1	$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	0.20 V
2	$I_2(s) + Cu(s) \rightarrow 2I(aq) + Cu^{2+}(aq)$	0.20 V
3	$NO(g) + 2OH^{-} \rightarrow NO_{2}(aq) + H_{2}O(l) + e^{-}$	0.20 V
4	$3N_2O(g) + 6H_2O(l) + 4Au^{3+}(aq) \rightarrow 6HNO_3(aq) + 12H^+(aq) + 4Au(s)$	0.20 V
5	$2Na^{+}(aq) + Ba(s) \rightarrow Ba^{2+} + 2Na(s)$	0.20 V

The number of true statements above is ______.

а	5
b	4
С	3
d	2

Solutions:

- 1. D
- 2. A
- 3. A
- 4. D
- 5. C