Reduction & Oxidation

1. In the reaction $2Fe^{2+(aq)} + Br_2(I) \rightarrow 2Fe^{3+(aq)} + 2Br^{-(aq)}$, the chemical $Fe^{2+(aq)}$ has ______ electrons and has undergone ______.

а	Gained	Reduction	
b	Gained Oxidation		
С	Lost	Reduction	
d	Lost	oxidation	

2. The products in the spontaneous reaction between Sn²⁺(aq) and Cu²⁺(aq) will be _____ and ____

а	Cu(s)	Sn(s)
b	Cu(s)	Sn ⁴⁺ (aq)
С	Cu ²⁺ (aq)	Sn(s)
d	Cu ²⁺ (aq)	Sn²+(aq)

3. The reducing agent capable of converting 1.0 mol/L $\,\mathrm{Sn^{4+}}(aq)$ ions to $\,\mathrm{Sn^{2+}}(aq)$, but not capable of converting 1.0 mol/L.

Sn²⁺(aq) to Sn(s) is _____

а	Pb(s)
b	Ni(s)
С	Cu(s)
d	Cr(s)

4. If fluorine gas is bubbled through Nal(aq), then _____ is ______.

а	Na⁺(aq)	Reduced
b	l ⁻ (aq)	Oxidized
С	F ₂ (g)	Oxidized
d	l ⁻ (aq)	Reduced

5. The **balanced net ionic equation** for the reaction that occurs when

a piece of potassium is dropped into a container of water is _____

а	$2K(s) + 2H_2O(l) \rightarrow H_2(g) + 2K^{+}(aq) + 2OH^{-}(aq)$
b	$K(s) + 2H_2O(I) \rightarrow H_2(g) + K^+(aq) + 2OH^-(aq)$
С	$K(s) + 2H2O(I) \rightarrow H^{+}(aq) + K^{+}(aq) + OH^{-}(aq)$
d	$2K(s) + 2H_2O(l) \rightarrow H^+(aq) + 2K^+(aq) + 2OH^-(aq)$

6. When Fe(s) is placed in a solution containing $Cu(NO_3)_2(aq)$ and $MgCl_2(aq)$ the most likely balanced redox reaction is ______

а	$3Cu^{2+}(aq) + 2Fe(s) \rightarrow 2Fe^{3+}(aq) + 3Cu(s)$		
b	$Cu^{2+}(aq) + Fe(s) \rightarrow Fe^{2+}(aq) + Cu(s)$		
С	$Cu(s) + 2Fe^{3+}(aq) \rightarrow 2Fe^{2+}(aq) + Cu^{2+}(aq)$		
d	$Mg^{2+(aq)} + 2CI^{-(aq)} \rightarrow Mg(s) + CI_2(g)$		

7. A student gathers information to determine the reactivity of fluorine gas. If the information is accurate, then a **correct statement** is that ______

_		
	a	Li(s) gains electrons more easily than does F ₂ (g)
	b	F ₂ (g) loses electrons more easily than does Li(s)
	С	F ₂ (g) loses electrons more easily than does Cl ₂ (g)
ſ	d	F ₂ (g) gains electrons more easily than does Cl ₂ (g)

8. The species that is reduced in the reaction given below is _____.

 $Cr_2O_7^{2-}(aq) + 14H^+(aq) + 3Sn^{2+}(aq) \rightarrow 3Sn^{4+}(aq) + 2Cr^{3+}(aq) + 7H_2O(I)$

а	Cr ₂ O ₇ ²⁻ (aq)
b	Cr ³⁺ (aq)
С	Sn ²⁺ (aq)
d	Sn ⁴⁺ (aq)

9. A solution of acidified potassium permanganate is stored in an iron container. The net ionic equation for a reaction that occurs is ______

а	$MnO_4^-(aq) + 8H^+(aq) + 5K(s) \rightarrow Mn^{2+}(aq) + 2H_2O(I) + 5K^+(aq)$
b	$2MnO_4^{-1}(aq) + 16H^+(aq) + 5Fe(s) \rightarrow 2Mn^{2+}(aq) + 8H_2O(l) + 5Fe^{2+}(aq)$
С	$MnO_4^{-}(aq) + 8H^{+}(aq) + Fe^{2+}(aq) \rightarrow Mn^{2+}(aq) + 4H_2O(I) + Fe^{3+}(aq)$
d	$MnO_4^{-}(aq) + 8H^{+}(aq) + Fe(s) \rightarrow Mn^{2+}(aq) + 4H_2O(I) + Fe^{2+}(aq)$

10. The <u>unbalanced</u> equation that represents a <u>reduction</u> half-reaction is _____

а	X ²⁺ (aq) → X ³⁺ (aq)	
b	$R^{2+}(aq) \rightarrow R^{+}(aq)$	
С	$Z(s) \rightarrow Z^{3+}(aq)$	
d	$2M^{-}(aq) \rightarrow M_{2}(g)$	

11. The balanced net ionic equation for the most probable spontaneous reaction of iron (II) chloride with acidified potassium nitrate is ______

а	$2Fe^{2+}(aq) + 4H^{+}(aq) + 2NO_{3}^{-}(aq) \rightarrow 2Fe^{3+}(aq) + N_{2}O_{4}(g) + 2H_{2}O(I)$	
b $2Fe^{2+}(aq) + 8H^{+}(aq) + 4NO_{3}(aq) \rightarrow 2Fe(s) + 2N_{2}O_{4}(g) + 4H_{2}O_{3}(aq)$		
С	$Fe^{2+}(aq) + 2H_2O(I) \rightarrow Fe(s) + 4H^+(aq) + O_2(g)$	
d	$Fe^{2+}(aq) + 2Cl^{-}(aq) \rightarrow Fe(s) + Cl_2(g)$	

12. **Numerical response question:** Left justify your answer in the boxes provided.

Consider the four equations listed below

1	$C_3H_{8(g)} + 5O_{2(g)} \rightarrow 3CO_{2(g)} + 4H_2O_{(g)}$
2	$3Ni(NO_3)_{2(aq)} + 2AI_{(s)} \rightarrow 2AI(NO_3)_{3(aq)} + 3Ni_{(s)}$
3	$NaCl_{(s)} + HNO_{3(aq)} \rightarrow HCl_{(aq)} + NaNO_{3(aq)}$
4	$4HCN_{(g)} + 9O_{2(g)} \rightarrow 4CO_{2(g)} + 2H_2O_{(g)} + 4NO_{2(g)}$

Choose <u>all</u> the reactions above that are $\underline{\text{oxidation-reduction}}$ reactions. List the answer(s) in <u>ascending order</u>.

Solutions:

- 1. D
- 2. B
- 3. A
- 4. B
- 5. A
- 6. B
- 7. D
- 8. A
- 9. B
- 10. B
- 11. A
- 12. 124