Redox Titration Lab

Name _		Partner	Date	Score	
• 7	To det To dev To und	ermine the concentration relop skill with a burette: derstand the properties o derience colour change as	f a <u>primary standa</u>	. ,	
 Materials: funnel, volumetric flask, beaker, Erlenmeyer flask, burette, burette brush, pipette, H₂SO₄(aq), FeSO₄(aq), KMnO₄(aq) ➤ Prelab:The KMnO₄(aq) will be the titrant. Write a balanced redox reaction. Be sure to include voltage 					
	*	Color of Excess reagent Color of limiting reagen Color at equivalence po Color at end point	t		
> (Calcul	ate the mass of iron (II) s	ulfate hepta hydra	te that is required to make 0.1	0 L of

0.10 mol/L solution

Procedure:

- Make the solution of iron (II) sulfate.
 - o Weigh out the correct mass of iron (II) sulfate.
 - o Dissolve it in 50 mL of the 5.0 mol/L acid solution provided. Use a BEAKER for this step
 - o Transfer the solution to a volumetric flask. Do sufficient rinsing with DISTILLED water
 - o Fill the volumetric flask to the 100 mL mark. Use distilled water and an eye dropper.
 - o Stopper and invert several times.
 - o Pour the solution out into a <u>clean</u>, <u>dry</u> beaker.
- ❖ Pipette 10 mL of the FeSO_{4(aq)} from the beaker into an Erlenmeyer flask. Be sure to place a white piece of paper under the flask. This will maximize the colors in the flask.
- Clean and prepare the burette for the excess reagent (KMnO_{4(aq)}) that is provided. Be sure to use a funnel. Record the initial volume of the burette.
- Titrate the iron (II) sulfate solution with the KMnO4 solution until the end point is reached. Record the final volume of the burette.
- Keep the first trial for color comparison.
- ❖ Do successive trials of this lab until you get three consistent volumes of titrant. (must be within 0.1 mL) Keep the trials and compare the colors at the end point.

Observations:

Make a clear and well labeled table to show your observations.

Analysis of DATA

 $\bullet \quad \hbox{Calculate concentration of the KMnO}_{4(aq)} \\$

ullet Why is acidified KMnO_{4(aq)} a poor primary standard solution?