
Potential energy diagrams

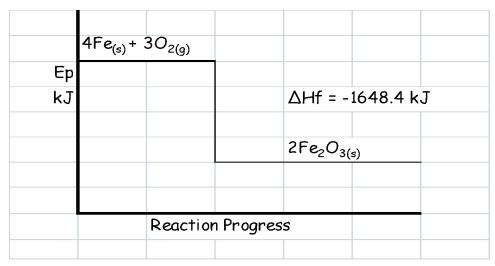
1. Numerical response question

Consider the following potential energy diagram below.

Exothermic Reaction for the combustion of a gas

Alyson looks carefully at the numbers on the diagram. She interprets that four numbers can be used to identify

- The position of reactants
- The position of the products
- The arrow that represents the activation energy
- The arrow that represents the enthalpy change of the reaction.


The four numbers (in the order given) are ____, ___, and ____

2. Numerical response question

•	Le	ft jus	tify yo	ur an	swer in the	boxes	provided

Consider the following energy diagram

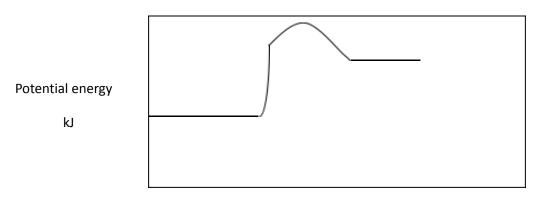
Enthalpy of Formation for Iron (III) oxide

The energy absorbed when 0.375 mol of $Fe_2O_{3(s)}$ decomposes to form $Fe_{(s)}$ and $O_{2(g)}$ is _____ kJ.

3. A student dissolves some NaCl(s) in a beaker of water. This process is represented by the equation

$$NaCl(s) \rightarrow Na^{+}(aq) + Cl^{-}(aq)$$

The following observations were made:


Initial temperature of water	21.2 °C
Final temperature of water	19.6 °C

Based on this data, which conclusion is justified?

а	The reaction has a negative ΔH value			
b	The potential energy of 1 mol of NaCl(s) is lower than			
	the combined potential energy of one mole of Na ⁺ (aq) and Cl-(aq).			
С	The potential energy of 1 mol of NaCl(s) is higher than			
	the combined potential energy of one mole of Na ⁺ (aq) and Cl-(aq).			
Ч	Dissolving NaCl(s) in water is exothermic			

4. Use the following diagram to answer the next question.

Formation of a compound

Reaction coordinate

The graph above could represent the formation of ______.

а	Ethane	
b	Ethanol	
С	Ethene	
d	Ethanoic acid	

5. Shane and Tim sketch a potential energy diagram and note that the activation energy for the forward reaction is 96 kJ of energy.

Justin looks at their diagram and observes that the activation energy for the <u>REVERSE</u> reaction is 42 kJ. Based on this information, David says the ΔH for the <u>FORWARD</u> reaction is _____kJ.

a	-138
b	+138
С	+54
d	-54

Solutions:

- 1. 1526
- 2. 309
- 3. B
- 4. C
- 5. C