Oxidizing Agents and Reducing Agents

1. In the reaction $Cu(s) + 2Ag^{+}(aq) \rightarrow Cu^{2+}(aq) + 2Ag(s)$

а	Cu(s) is reduced by the oxidizing agent
b	Ag ⁺ (aq) is the reducing agent and Cu(s) is reduced.
С	Cu(s) is the reducing agent and Ag ⁺ (aq) is reduced
d	Cu(s) is the oxidizing agent and Ag⁺(aq) is oxidized

2.	The oxidizing agent in a redox equation	electrons and undergoes the process of

a	loses electrons and is reduced
b	gains electrons and is reduced
С	loses electrons and is oxidized
d	gains electrons and is oxidized

3. Aaron and Gerald are asked to balance the following reaction in an acidic solution.

$$CIO_3$$
 (aq) + CI_2 (g) \rightarrow CIO (aq)

They find that _____ is the reducing agent and it changes its oxidation number from ____ to ____.

а	ClO ₃ (aq)	-5	-1
b	ClO ₃ (aq)	+5	+1
С	Cl ₂ (g)	0	+1
d	Cl ₂ (g)	0	-1

4. Aaron and Gerald are asked to balance the following reaction in an acidic solution.

$$ClO_3(aq) + Cl_2(g) \rightarrow ClO(aq)$$

They find that _____ is the oxidizing agent and it changes its oxidation number from ____ to ____.

а	ClO ₃ (aq)	-5	-1
b	ClO ₃ (aq)	+5	+1
С	Cl ₂ (g)	0	+1
d	Cl ₂ (g)	0	-1

5. Silver compounds, such as AgNO₃(aq), can act as strong oxidizing agents because

а	silver metal can easily be oxidized to silver ions
b	silver metal can easily be reduced to silver ions
С	silver ions can easily be oxidized to silver metal
d	silver ions can easily be reduced to silver metal

6. An aluminum strip is placed into aqueous copper (II) nitrate. The oxidizing agent for the reaction that occurs is

а	Al(s)
b	Al ³⁺ (aq)
С	Cu(s)
d	Cu ²⁺ (aq)

7. The strongest reducing agent listed below is ______.

a	Fe(s)
b	Cd ²⁺ (aq)
С	F ⁻ (aq)
d	l ₂ (s)

8. The strongest oxidizing agent ______.

а	Br ₂ (I)
b	Cl ₂ (g)
С	Cl ⁻ (aq)
d	Br ⁻ (ag)

9. Consider the reaction given below.

$$2Sn^{2+}(aq) \rightarrow Sn(s) + Sn^{4+}(aq)$$

A correct statement is for this reaction is _____

а	The reaction is spontaneous
b	The reaction involves a decrease in potential energy
С	Sn ²⁺ (aq) undergoes disproportionation
d	Sn(s) is the oxidizing agent.

10. In the reaction $2Ag^{+}(aq) + Cu(s) \rightarrow 2Ag(s) + Cu^{2+}(aq)$, the silver ion is _____ and is the ____ agent.

а	Oxidized	Reducing
b	Oxidized	Oxidizing
С	Reduced	Oxidizing
d	Reduced	reducing

11. Which oxidizing agent \underline{cannot} be used to spontaneously oxidize $\mathbf{Sn^{2+}(aq)}$?

а	Fe ³⁺ (aq)
b	Fe ²⁺ (aq)
С	Cu ²⁺ (aq)
d	Br ₂ (I)

Solutions:

- 1. C
- 2. B
- 3. C
- 4. B
- 5. D
- 6. D
- 7. A
- 8. B
- 9. C
- 10. C
- 11. B