Oxidation Numbers

1. Consider the following reaction.

$$4Zn(s) + 10H^{+}(aq) + NO_{3}(aq) \rightarrow NH_{4}(aq) + 4Zn^{2+}(aq) + 3H_{2}O(I)$$

Nitrogen undergoes ______ and its oxidation number _____ by _____

а	Oxidation	Increases	8
b	Reduction	Decreases	8
С	Oxidation	Decreases	5
d	reduction	Increases	5

2. Harold and George consider four chemicals that contain **chlorine**.

 $\begin{array}{lll} I & & NaClO_3 \\ II & & NaClO_4 \\ III & & Cl_2 \\ IV & & NaClO \\ \end{array}$

They put the chemicals in order from the lowest oxidation number for chlorine to the highest oxidation number for chlorine. The correct order is ____, ____, and ____

а	II, I, IV, III
b	III, IV, II, I
С	III, IV, I, II
d	I, II, IV, III

3. Mary and Sylvia assign oxidation numbers to the following compounds.

NaHSO₃ Na₂SO₄ NaHS Na₂S₂O₃

They find that the oxidation number of sulfur in the compounds in the order given will be ____, ____, and

а	+5	+4	-2	+2
b	-4	-4	+2	+3
С	+4	-6	+2	-2
d	+4	+6	-2	+2

4.	Aaron and Gerald are asked to balance the following reaction in an acidic solution using the smallest whole
	number coefficients possible.

$$CIO_3(aq) + CI_2(g) \rightarrow CIO(aq)$$

The coefficient for the number of $H^+(aq)$ used in the reaction will be _____ and this value will be found on the side of the reaction.

а	2	Reactant
b	4	Product
С	2	Product
d	4	Reactant

5. Consider the balanced reaction given below.

$$Au(s) + 3 HNO_3(aq) + 4HCI(aq) \rightarrow HAuCI_4(aq) + 3 H_2O(I) + 3 NO_2(g)$$

In this reaction, nitrogen undergoes _____ when its oxidation number changes from ____ to ____

а	Oxidation	+5	+4
b	Reduction	+5	+4
С	Oxidation	+4	+5
d	reduction	+4	+5

6. In the processing of acid rain, sulfates are converted to sulfites as indicated by the <u>incomplete and unbalanced</u>

half reaction $H_2SO_4(aq) \rightarrow H_2SO_3(aq)$

In this half reaction the oxidation number of sulfur _____ and ____ occurs.

а	Decreases	Reduction
b	Increases	Oxidation
С	Decreases	Oxidation
d	Increases	Reduction

7. Wes and Krysten consider how dichromate ions convert to chromium (III) ions as shown below

$$Cr_2O_7^{2-}(aq) \rightarrow Cr^{3+}aq)$$

In this half reaction, the oxidation number of chromium ____ and _____ occurs.

а	Increases	Oxidation
b	Decreases	Reduction
С	Decreases	Oxidation
d	Increases	Reduction

8. Marion considers the unbalanced oxidation reduction reaction given below.

$$NO_2(aq) \rightarrow NO(g) + NO_2(g)$$

She recognizes that this is a disproportionation equation. In the oxidation half reaction, the nitrogen atom changes its oxidation number from ____ to ____, while in the reduction half reaction; the nitrogen atom changes its oxidation number from ____ to ___

а	3	2	3	4
b	3	4	3	2
С	4	3	2	3
d	3	2	5	4

9. Jaycee and Samantha both study Chemistry 30 and Biology 30 so they are experts on cellular respiration.

They know that in a cellular respiration reaction, _____ is the oxidizing agent and _____ is the reducing agent.

They recognize that in calculating the enthalpy of a cellular respiration reaction, that water must be in the _____ state.

a	Carbon	Oxygen	Liquid
b	Oxygen	Carbon	Liquid
С	Carbon	Oxygen	Gaseous
d	Oxygen	Carbon	Gaseous

10. Numerical response question: Left justify your answer in the boxes provided.

1	
1	
1	

Each chemical reagent in the reaction below is assigned a number

$$2Br_{2(I)} + Sn_{(s)} \rightarrow SnBr_{4(aq)}$$
1 2 3

Using the assigned numbers, complete the boxes as indicated:

1st box: <u>oxidizing agent</u> 2nd box: <u>reducing agent</u>

3rd box: <u>oxidation number of bromine</u> 4th box: <u>oxidation number of tin ion</u>

11. Numerical response question: Left justify your answer in the boxes provided.						
		_	•	mine the oxida	tion number for <u>carbon</u> .	
		CS _{2(s)} Box 1	CH _{4(g)} Box 2	CO _{2(g)} Box 3	C ₂ H _{6(g)} Box 4	
	(you do n	ot need to	record if the o	xidation numbe	ers are positive or negative	ve)

Solutions:

- 1. B
- 2. C
- 3. D
- 4. B
- 5. B
- 6. A
- 7. B
- 8. B
- 9. B
- 10. 1204
- 11. 4443