Acid Unit: K_{a,} K_b, pH

1. An acid has a $K_a = 5.3 \times 10^{-10}$.Choose a statement that is **TRUE** for this acid.

а	This is a strong dilute acid.
b	The K _b for the conjugate base is 1.1 x 10 ⁻⁴
С	This acid is a weaker acid than hydrocyanic acid.
d	This acid is a stronger acid than benzoic acid.

2. Unlike other hydrogen halides, HF(aq) is a weak acid. It has special properties that make it an excellent acid for etching glass. The pH of a 2.0×10^{-2} mol/L solution of HF(aq) at 25° C is ______

а	2.49		
b	1.70		
С	2.40		
d	11.52		

3. A weak acid has a _____ K_a and its conjugate base has a ____ K_b .

а	Small	Large
b	Small	Small
С	Large	Small
d	Large	Large

4. A weak base has a _____ K_b and its conjugate acid a ____ K_a

а	Small	Small
b	Small	Large
С	Large	Small
d	Large	Large

5. Choose the base and conjugate acid pair that have a K_b of 5.6 x 10^{-10}

	C ₆ H ₅ COO ⁻ and C ₆ H ₅ COOH
b	CH ₃ COO ⁻ and CH ₃ COOH
С	HSO ₃ and H ₂ SO ₃
d	HOOCCOO ⁻ and HOOCCOOH

6. Choose the base and conjugate acid pair that have a $\rm K_b$ of 2.5 x 10^{-8}

а	$C_6H_6O_6^{2-}$ (aq) and $C_6H_6O_6^{-}$
b	$C_3H_5O(COO)_3^{3-}$ (aq) and $C_3H_5OCOOH(COO)_2^{2-}$ (aq)
С	HF(aq) and F ⁻ (aq)
d	HOCl(aq) and OCl ⁻ (aq)

7. A solution of hydrocyanic acid has a pH of 4.80. The concentration of the HCN(aq) solution is _____ mol/L

а	0.16
b	0.25
С	0.41
d	0.65

8. A solution of formic acid has a pH of 2.03. The concentration of the HCOOH(aq) solution is _____ mol/L

а	0.49
р	0.0093
С	0.60
d	0.0087

9. A solution of lactic acid has a pH of 2.97. The concentration of the C₂H₅OCOOH(aq) solution is _____ mol/L

а	1.1 x 10 ⁻³
b	5.3x10 ⁻³
С	6.5 x 10 ⁻²
d	9.3 x 10 ⁻³

10. A solution of oxalic acid has a pH of 0.58 The concentration of the HOOCCOOH(aq) solution is _____ mol/L

а	0.26
b	1.5
С	1.1
d	0.75

11. A student sampled four different acids, each at 0. 10 mol/L and recorded the following observations.

Acid	Volume (mL)	рН	Conductivity
I	25.0	4.50	Poor
II	25.0	3.25	Poor
III	25.0	1.50	Good
IV	25.0	5.50	Poor

The acid that would be expected to have the lowest k_a value would be _____

а	_
b	=
С	Ш
d	IV

12. As the pH of a solution increases, the

а	[OH ⁻ (aq)] decreases
b	[H ₃ O ⁺ (aq)] decreases
С	solution becomes more acidic
d	conductivity must decrease

13. If a base is added to a neutral aqueous solution, _____

а	[OH ⁻ (aq)] will decrease
b	[H ₃ O ⁺ (aq)] will decrease
С	pH of the solution will decrease
d	Protons will be donated to another substance in the solution.

14. The pH of a 0.10 mol/L solution of benzoic acid ($C_6H_5COOH(aq)$) is______.

а	2.30
b	1.00
С	1.40
d	2.61

15. The pH of a 0.10 mol/L solution of ascorbic acid ($H_2C_6H_6O_6(aq)$ is______.

а	4.04
b	2.53
С	2.03
d	2.43

16. The pH of a 0.10 mol/L solution of formic acid (HCOOH(aq)) is_____.

а	2.41
b	3.74
С	2.38
d	2.13

17. The pH of a 0.10 mol/L solution of carbonic acid (H₂CO₃(aq)) is______.

а	3.67
b	6.35
С	2.94
d	3.70

18. The [H $_3O^{+}(aq)$] in 100 mL of 0.10 mol/L HF(aq) at 25 °C is _____ mol/L

а	0.0076
b	0.076
С	0.010
d	0.10

19. The [H $_3$ O $^+$ (aq)] in 100 mL of 0.10 mol/L HNO $_2$ (aq) at 25 °C is _____ mol/L

а	0.024
b	0.010
С	0.0072
d	0.10

20. The [H $_3$ O $^+$ (aq)] in 100 mL of 0.10 mol/LH $_2$ CO $_3$ (aq) at 25 $^\circ$ C is _____ mol/L

а	2.1 x 10 ⁻⁴
b	4.5 x 10 ⁻⁷
С	1.0 x 10 ⁻¹
d	6.7 x 10 ⁻⁴

21. The [H $_3O^{\scriptscriptstyle +}(aq)]$ in 100 mL of 0.10 mol/L $C_6H_5COOH(aq)$ at 25 °C is _____ mol/L

а	1.2 x 10 ⁻³
b	7.9 x 10 ⁻³
С	1.0 x 10 ⁻¹
d	2.5 x 10 ⁻³

22. Predict which 0.10 mol/L solution would have the lowest pH.

а	NaHSO ₄ (aq)
b	HNO₃(aq)
С	HOOCCOOH(aq)
d	NaHSO₃(aq)

23. In a 0.10 mol/L HCOOH(aq) solution, the species present in highest concentration is
a HCOOH(aq) b HCOO ⁻ (aq) c H ₃ O ⁺ (aq) d OH ⁻ (aq)
24. Consider the list of 0.10 mol/L solutions given below. The weakest electrolyte from this list would be
a HCl(aq) b NaCl(aq) c HOCl(aq) d HNO ₂ (aq)
25. A 0.100 mol/L of an unknown acid has a pH of 2.95.
Based on this information, the K_b for the unknown acid is
a 7.9×10^{-10} b 8.7×10^{-12} c 1.3×10^{-5} d 1.1×10^{-3}
26. Which concentration of HCl(aq) would yield the same pH as 0.10 mol/L CH₃COOH(aq)?
a 1.3 mol/L b 0.10 mol/L c 0.013 mol/L d 0.0013 mol/L
27. The K _b for the ion HCOO (aq) is
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
28. The K_b for the ion $HSO_3^-(aq)$ is
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
29. The K _b for the ion HCO ₃ (aq) is
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

30. The K_b for the ion HPO_4^{2-} (aq) is ______

а	1.6 x 10 ⁻⁷
b	4.8 x 10 ⁻¹³
С	2.1 x 10 ⁻²
d	6.2 x 10 ⁻⁸

31. The K_b for the ion HOOCCO⁻(aq) is _____

а	1.8 x 10 ⁻¹³
b	5.6 x 10 ⁻²
C	1.5 x 10 ⁻⁴
d	7.1 x 10 ⁻¹¹

32. The K_b and conjugate acid for CN^- (aq) will be _____ and _____

а	6.2 x 10 ⁻¹⁰	CN⁻ (aq)
b	6.2 x 10 ⁻¹⁰	HCN(aq)
С	1.6 x 10 ⁻⁵	HCN(aq)
d	1.6 x 10 ⁻⁵	CN⁻ (aq)

33. The K_a and conjugate base for NH_4 $^{+}(aq)$ will be _____ and ____

а	5.6 x 10 ⁻¹⁰	NH₃(aq)
b	1.8 x 10 ⁻⁵	NH₃(aq)
С	5.6 x 10 ⁻¹⁰	NH⁺(aq)
d	1.8 x 10 ⁻⁵	NH ²⁺ (aq)

34. The K_a and conjugate base for HSO₃ (aq) will be _____ and ____

а	1.4 x 10 ⁻²	H ₂ SO ₃ (aq)
b	1.6 x 10 ⁻⁷	SO ₃ ²⁻ (aq)
С	7.1 x 10 ⁻¹³	H₂SO₃(aq)
d	6.3 x 10 ⁻⁸	SO ₃ ²⁻ (aq)

35. The K_a and conjugate base for HOOCCOO (aq) will be _____ and ____

а	6.7 x 10 ⁻¹¹	OOCCOO ²⁻ (aq)
b	5.6 x 10 ⁻²	HOOCCOOH(aq)
С	1.5 x 10 ⁻⁴	OOCCOO ²⁻ (aq)
d	1.8 x 10 ⁻¹³	HOOCCOOH(aq)

36. An unknown acid with a concentration of 1.2 x 10⁻¹ mol/L, has a pH of 2.50. the value of the K_a for this acid is _____

а	3.6 x 10 ⁻¹
b	8.6 x 10 ⁻⁵
C	8.3 x 10 ⁻⁵
d	4.8 x 10 ⁻⁵

37. A 2.5 mol/L solution of lactic acid dissociates at 25°C. the pH of this acid will be ____

а	1.93
b	1.73
С	-0.40
d	1.50

38. An unknown concentration of carbonic acid has a pH of 4.20 The concentration of the acid will be _____ mol/L

а	7.1 x 10 ⁻³
b	6.3 x 10 ⁻⁵
С	8.9 x 10 ⁻³
d	4.0 x 10 ⁻³

39. A 0.10 mol/L solution of acetic acid dissociates at 25°C. Its pH is _____

а	2.88
b	3.74
С	4.74
d	1.00

40. A 0.10 mol/L solution of phosphoric acid dissociates at 25°C. Its pH is $__$

а	1.50
b	2.16
С	3.16
Ч	1 64

Solutions:

20. A

1.	С	21.	D
2.	Α	22.	В
3.	Α	23.	Α
4.	В	24.	С
5.	В	25.	Α
6.	В	26.	D
7.	С	27.	D
8.	Α	28.	В
9.	D	29.	С
10.	В	30.	Α
11.	D	31.	Α
12.	В	32.	С
13.	В	33.	Α
14.	D	34.	D
15.	Α	35.	С
16.	С	36.	В
17.	Α	37.	В
18.	Α	38.	С
19.	С	39.	Α

40.

D