Acid Unit: Indicators

1. A mass of 1.80 g of $CH_3COOH(aq)$ is dissolved in enough water to make 300 mL of solution. If the indicator _____ is dropped into this solution then the solution will turn _____

а	HOr	Orange
b	HBb	Blue
С	HMv	yellow
d	НМо	red

2. An indicator extracted from beetroot reacts with water according to the following equation:

 $HR(aq) + H_2O(I) \leftrightarrow H_3O^{+}(aq) + R^{-}(aq)$

In acidic solution this indicator is red, and in basic solutions it is yellow. The chemical species that is yellow in colour is

а	R ⁻ (aq)	Conjugate base
b	R ⁻ (aq)	Conjugate acid
С	HR(aq)	Conjugate base
d	HR(aq)	Conjugate acid

3. If 47 mL of a monoprotic weak acid solution neutralizes 56 mL of 0.010 mol/L Ba(OH) $_2$ (aq) and this monoprotic acid solution causes methyl orange to turn red and causes orange IV to turn yellow, then the percent dissociation of this acid is _____ %

а	2.5	
b	4.2	
С	2.1	
d	0.89	

4. A student tested an acid with pH = 2.4. Some of the observations below are false.

Number	Observation
I	Turns HPr red
II	Conducts an electric current
III	Feels slippery
IV	Turns HBg yellow
V	Reacts with Zn(s) to form H ₂ (g)

The **correct** observations could be:

а	I, II, III, IV, V
b	I, III
С	II, IV, V
d	I, II, IV, V

Solutions:

- 1. D
- 2. A
- 3. B
- 4. C