Heats of Reaction for the Combustion of Magnesium

Chemistry 30 Lab

Name	Partner	Score		
Purpose:				
- u.posc.				
 To determine a lab value for the heat of reaction for the combustion of magnesium. To determine the percentage error for this procedure To explain reasons why for the percentage error 				
Prelab:				
The theoretical value fo	r the enthalpy of forma	ation of magnesium oxide is		
$Mg_{(s)} + \frac{1}{2} O_{2(g)} \rightarrow MgO_{(s)}$ $\Delta H_f = \underline{\hspace{1cm}}$				
Manipulate the equation should be the same value		thalpy of formation of magnesium oxide. It		
Reaction 1 N	$MgO_{(s)} + 2 HCI_{(aq)} \rightarrow Mg$	$gCl_{2(aq)} + H_2O_{(I)}$		
Reaction 2 N	$Mg_{(s)} + 2HCl_{(aq)} \rightarrow MgCl_2$	$_{2(aq)} + H_{2(g)}$		
Reaction 3: H	$H_{2(g)} + O_{2(g)} \rightarrow H_2O_{(I)}$			

Materials

 \bullet $\mbox{ MgO}_{\rm (s),}$ $\mbox{Mg}_{\rm (s)}$ and 1.00 $\frac{mol}{L}$ $\mbox{ HCI}_{\rm (an)}$

- Thermometer(s)
- Styrofoam cups

Procedure:

1. For Reaction 1 above, combine 1.00 g of magnesium oxide with 100 mL of 1.00 \overline{L} HCl_(aq) in a Styrofoam cup. Stir.

- a. Be sure to measure the temperature of the acid before the reaction occurs and record
- b. Be sure to measure the highest temperature of the mixture as the reaction progresses and record.
- c. The products can be flushed down the drain once the reaction is complete.

of 1.00 $\frac{mol}{L}$

mol

2. For Reaction 2 above, combine 0.50 g of magnesium metal with 100 mL of 1.00 $\,^L$ HCl $_{\rm (aq)}$ in a Styrofoam cup. Stir.

- a. Be sure to measure the temperature of the acid before the reaction occurs and record
- b. Be sure to measure the highest temperature of the mixture as the reaction progresses and record.
- c. The products can be flushed down the drain once the reaction is complete.
- 3. Reaction 3 will not be done. Use the heat of formation given in the data booklet for this reaction.

Observation Table:

Reaction 1

Mass of magnesium oxide used	Initial temperature of acid	Final temperature of mixture

Reaction 2

Mass of magnesium metal	Initial temperature of acid	Final temperature of mixture

Analysis:

The $HCl_{(aq)}$ will be treated as if it is the water of a calorimeter. Use its specific heat capacity as

4.19
$$\frac{kJ}{kg^{\circ}C}$$

- 1. Calculate the enthalpy of the reaction for
 - a. Reaction 1
 - b. Reaction 2.
- 2. Use this information and the theoretical value for Reaction 3 to determine the experimental value for the enthalpy of <u>combustion of magnesium</u>.
- 3. Calculate the percentage error in the value found in step 2.
- 4. Justify the percentage error found in step 3. Do NOT give the excuse that you may have made errors in measuring.