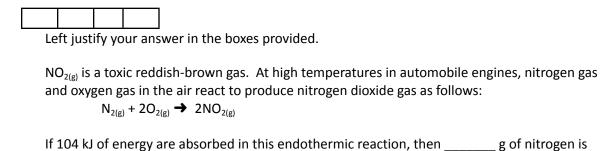
ΔH Notation and related questions

1. Numerical response question

Left justify your answer in the boxes	provided.
Consider the following balanced equ	
$CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(g)}$	$\Delta H = -890.5 \text{ kJ}$
When 15 0 g of mothans is hurned	kt of opergy will be released
When 15.0 g of methane is burned, _	kJ of energy will be released.


2. Numerical response question

Left justify your answer in the boxes provided.	
Consider the <u>balanced</u> equation given below.	
$2C_8H_{18(I)} + 25O_{2(g)} \rightarrow 16CO_{2(g)} + 18H_2O_{(g)} + 10148.4 \text{ kJ}$	

The enthalpy change for the combustion of 1.0 g of octane ($C_8H_{18(I)}$) is $\stackrel{\pm}{=}$ ____kJ

3. Numerical response question

reacted.

4. Use the following reaction to answer the question below.

$$2H_2O(I) + 571.6 \text{ kJ} \rightarrow 2H_2(g) + O_2(g)$$

If one mole of water is formed from its elements, the ΔH is _____ kJ.

а	-571.6
b	+571.6
С	+285.8
d	-285.8

5. Consider the reaction below.

$$2NO(g) + O_2(g) \rightarrow 2NO_2(g) + 116.2 kJ$$

The mass of NO(g) consumed when 50.0 kJ of energy is produced is _____

а	25.8
b	12.9 g
С	20.3 g
d	40.6 g

6. Consider the following formation reaction

$$Li(s) + \frac{1}{2} H_2(g) \rightarrow LiH(s) + 90.5 kJ$$

The amount of heat necessary to <u>decompose</u> 15.9 g of LiH(s) into Li(s) and $H_2(g)$ at standard conditions is ______.

а	90.5 kJ
b	181 kJ
С	1.44 MJ
d	15.9 kJ

7. In the combustion of hydrogen, the amount of energy released depends on _____

а	Molar mass of hydrogen	
b	Oxidation number of hydrogen	
С	Amount of hydrogen used	
d	Molar enthalpy of formation of hydrogen gas	

8. Consider the reaction of paraffin $(C_{25}H_{52}(s))$ given below.

$$C_{25}H_{52}(s) + 38O_2(g) \rightarrow 25 CO_2(g) + 26H_2O(g) + energy$$

The energy released by paraffin in this reaction is called the molar enthalpy of

____-

а	Formation
b	Combustion
С	Synthesis
d	Decomposition

9. Consider the equation below.

$$2Li(s) + Cl_2(g) \rightarrow 2LiCl(s) + 820 kJ$$

The molar heat of formation of LiCl(s) is ______mol

а	+820
b	+410
С	-410
d	-820

10. Consider the following equation:

$$2Al_2O_3(s) \rightarrow 4Al(s) + 3O_2(g)$$
 $\Delta H = 3351.4 \text{ kJ}$

What change in energy occurs when one mole of aluminum oxide is formed from its elements?

а	1675.7 kJ of energy is absorbed
b	1675.7 kJ of energy is released
С	3351.4 kJ of energy is absorbed
d	3351.4 kJ of energy is released

11. How much heat is absorbed in the formation of 1.61 g of ethene (C₂H₄(g)) from its elements?

а	3.01 kJ
b	32.5 kJ
С	84.2 kJ
d	522 kJ

12. Consider the following information.

SiF ₄ (g) has a molar heat of formation of -1617 $\frac{kJ}{mol}$
SiCl ₄ (I) has a molar heat of formation of -688 $\frac{kJ}{mol}$
SiBr ₄ (I) has a molar heat of formation of -458 $\frac{kJ}{mol}$
$\frac{kJ}{mol}$ Sil ₄ (s) has a molar heat of formation of -190 $\frac{mol}{mol}$

Which Silicon halide is the most stable?

а	SiF₄(g)
b	SiCl ₄ (I)
С	SiBr ₄ (I)
d	Sil ₄ (s)

Solutions:

- 1. 832
- 44. 2.
- 144 3.
- 4. d
- 5. а
- 6. b
- 7. С
- b
- 8. 9.
- С 10. b
- 11. а
- 12. а