Faraday's Law

1. In the Hall-Herlout process, molten aluminium oxide ($Al_2O_3(I)$) is used to produce aluminium metal (Al(s)).

A current of _____ A must run for 24.0 h to produce 4.00 kg of aluminium at the cathode

a	497
b	166
С	2.98 x 10 ³
d	1.78 x 10 ⁶

2. Mattie and Stephanie weigh the anode of a cell and find the initial mass to be 8.53 g. They then run a current of 2.50 A for 2.00 h. If the final mass of the anode is 3.32 g, then the anode is made of ______.

а	Zinc
b	Copper
С	Magnesium
d	Iron

3. Nic and Jordan weigh the anode of a cell and find the initial mass to be 20.8 g. They run a current of 4.00 A for a time of 2.50 h. When they disconnect and weigh again, the final mass of the anode is 9.90 g. Based on these observations; the boys conclude that the anode is made of _______.

а	Tin	
b	Nickel	
С	Zinc	
d	Cobalt	

4. The amount of time that it will take to plate out all the copper from 25 mL of 0.10 mol/L copper (II) nitrate will be _____ min. Assume the current used is 1.5 A.

а	5.4
b	2.7
С	11
Ь	3.2×10^{2}

5. The time to produce 5.40 g of Al(s) from molten bauxite ($Al_2O_3(I)$) using a current of 5.00 A will be _____ h

а	1.07
b	193
С	3.22
d	9.66

6. Silver plating of ornaments or utensils is done by electrolysis of a soluble silver compound. The object to be plated is placed at the cathode. If 10.8 g of silver are to be deposited, how long will it take to plate the object using a current of 0.500 A?

а	2.68 h
b	5.37 h
С	3.22 x 10 ² h
d	1.93 x 104 h

7. The time required to plate out 10.0 g of chromium metal from a 0.10 mol/L solution of chromium(II) nitrate in an electrolytic cell is dependent mainly upon ______

a	Surface area of the anode in the cell
b	initial mass of the cathode in the cell
С	amount of current supplied to the cell
d	charge of the nitrate ions in the solution

8. An electrolytic cell contains 2.00 mol/L NiCl $_2$ (aq) and operates at 0.500 A. To plate out 5.87 g of Ni(s), the cell will function for _____ s

а	1.93 x 10 ⁴
b	3.86 x 10 ⁴
С	7.72 x 10 ⁴
d	1.52 x 10⁵

9. What mass of aluminum is deposited during the electrolysis of molten aluminum bromide if 30.0 A flows through the cell for 4.85 h?

а	146 g	
b	48.8 g	
С	1.46 g	
d	0.0351 g	

10. Ian and Crystal set up an electrochemical cell where 1.5 g of Zn(s) is removed from the anode. If the cell has run for a total of 1.0 hours, then the cell will need a minimum current of ____ A

a	1.2
b	2.4
С	0.60
d	12

11. Anne and Carly set up an electrochemical cell where 0.250 mol of $Cu^{2+}(aq)$ is formed from Cu(s). If the cell has run for 45.0 minutes, the cell will need a minimum current of _____ A.

а	8.94
b	3.36
С	17.9
d	0.298

12. Bill and Wayne are asked to collect evidence to support the theoretical value of Faraday's constant. They collect the following data using <u>aluminium</u> at the anode.

Initial mass of anode	Final mass of anode	Amperage of cell	Time the cell operates
15.0 g	10.9 g	6.80 A	105 min

Based on this information, the experimental value of Faraday's constant is $\underline{\hspace{1cm}}$

a	1.57 x 10 ⁴
b	9.40 x 10 ⁴
С	5.64 x 10 ⁶
d	3.13 x 10 ⁴

13. Theresa and Wendy are asked to collect evidence to support the theoretical value of Faraday's constant. They collect the following data using **zinc** at the anode.

Initial mass of anode	Final mass of anode	Amperage of cell	Time the cell operates
31.5	13.5 g	9.00 A	1.50 h

Based on this information, the experimental value of Faraday's constant is $\underline{\hspace{1cm}}$

а	4.42 x 10 ⁴
b	2.40 x 10 ⁴
С	1.77 x 10⁵
d	8.83 x 10 ⁴

14.	Numerical	response question:	Left ius	tify your	answer i	n the	boxes	provided.
	- Tallici icai	i coponise questioni.	LCI L IUS	tiiy youi	answer i		DUNCS	pi oviaca.

_			
$\overline{}$			

A mass of 0.175 g of gold is plated on a ring in 10.0 min according to the half reaction given below

The current required to do this is a.bc x 10^{-d} amps.

Solutions:

- 1. A
- 2. D
- 3. B
- 4. A
- 5. C
- 6. B
- 7. C
- 8. B
- 9. B
- 10. A
- 11. C
- 12. B
- 13. D
- 14. 4291