Acid Unit: Equilibrium & Rates of Reaction

1. A sample of $NO_2(g)$ is formed from its elements . Using the **smallest whole number coefficients** to balance the reaction, the correct expression for $K_{(eq)}$ is ______

а	$\frac{[NO_2]^2}{[N_2]x[O_2]^2}$
b	$\frac{[N_2]x[O_2]^2}{[NO_2]^2}$
С	$\frac{[NO_2]^2}{[N_2]^2 x[O_2]}$
d	$\frac{[NO]x[O_2]^2x[N_2]^2}{3}$

$$\frac{[R]^{2}[T]}{[X]^{3}}$$

2. The K_{eq} for a reaction is given as $K_{eq} = \overline{\left[X\right]^3}$

This equilibrium constant is for the reaction _____

а	$2R(g) + T(aq) \leftarrow \rightarrow 3X(g)$
b	$3X(aq) \leftarrow \rightarrow 2T(aq) + R(g)$
С	$2Q(aq) + 3X(g) \leftarrow \rightarrow T(g) + 2R(aq)$
d	$2Q(s) + 3X(aq) \leftarrow \rightarrow T(g) + 2R(g)$

3. Consider the reaction below:

$$2NO_2(g) \leftarrow \rightarrow N_2O_4(g) + 55.3 \text{ kJ}$$

The correct equation for solving for the K_{eq} of this reaction is _____

а	$[N_2O_4]x55.3$		
	$K_{eq} = [NO_2]^2$		
b	$[N_2O_4]$		
	$K_{eq} = \overline{[NO_2]^2}$		
С	$[NO_2]^2$		
	$K_{\text{eq}} = \overline{[N_2 O_4]}$		
d	$[NO_2]^2$		
	$_{K_{eq}} = \overline{[N_2 O_4] x55.3}$		

4. A characteristic of an equilibrium system is ______

а	the presence of equal amounts of reactants and products			
b	the completion of a chemical reaction when changes cease to occur			
С	equal amounts of reactants and products entering and being removed from the			
	system			
d	the conversion of reactants to products occurring at the same rate as the			
	conversion of products to reactants			

5. Numerical response question

Left justif	v your a	answer i	n the bo	xes provided

Kailyn is going off to university in Los Angeles. To help her prepare, her classmates give her a Bottle-of-smog: a 100 mL glass tube that contains dinitrogen tetraoxide at equlibirum.

$$N_2O_4(g) \longleftarrow \rightarrow 2NO_2(g)$$

The tube is placed in boiling water where it turns a dark brown. At this temperature the K_c is 0.211. If the equilibrium concentration of $N_2O_4(g)$ is 0.049 mol/L, then the equilibrium concentration of $NO_{2(g)}$ will be a.b x 10^{-c} mol/L

Solutions:

- 1. A
- 2. D
- 3. B
- 4. D
- 5. 321