Acid Unit: Definitions and Properties

1. Which ion is **not amphiprotic?**

а	HOOCCOO ⁻ (aq)
b	HPO ₄ ²⁻ (aq)
С	H ₂ PO ₄ ^{-(aq)}
d	OOCCOO ²⁻ (aq)

2. The <u>net ionic equation</u> for the reaction that occurs between nitric acid and aqueous potassium hydroxide is

а	$HNO_3(aq) + OH^-(aq) \rightarrow NO_3^-(aq) + H_3O^+(aq)$		
b	$HNO_3(aq) + KOH \rightarrow KNO_3(aq) + H_2O(I)$		
С	$K^{+}(aq) + NO_{3}(aq) \rightarrow KNO_{3}(aq)$		
d	$H_3O^+(aq) + OH^-(aq) \rightarrow 2 H_2O(I)$		

3. If 0.10 mol/L solutions are prepared for each of the following, which will have the highest conductivity?

а	H₂S(aq)	
b	HOCl(aq)	
С	HF(aq)	
d	C ₆ H ₅ COOH(aq)	

4. A 0.10 mol/L solution of CH₃COOH(aq) at 25°C sits in a beaker in the lab. The TRUE statement below is _____

а	there are more ions than molecules in the solution		
b	there are more molecules than ions in the solution		
С	There are equal numbers of ions and molecules in the solution		
d	The [H ₃ O ⁺ (aq)] is higher than [CH ₃ COO ⁻ (aq)]		

5. If four acidic solutions of identical concentration are tested for electrical conductivity, which solution would have the **lowest** electrical conductivity?

а	HCN(aq)	
b	H₂CO₃ (aq)	
С	HNO ₂ (aq)	
d	HNO ₃ (aq)	

6. A neutralization reaction is a reaction between a/an ___ and a/an ___ to form a ___ and ____.

а	Acid	Base	Salt	Water
b	Acid	Metal	Salt	Hydrogen gas
С	Aqueous solution	Aqueous solution	Precipitate	Aqueous solution
d	Oxidizing agent	Reducing agent	Metal	Aqueous solution

7.	Milk of magnesia tastes bitter and turns HPh to pink.	It is reasonable to conclude that the milk of magnesia could
, .	wink of magnesia tastes bitter and tarns in it to pink.	Te is reasonable to conclude that the milk of magnesia could

a	Neutralize a solution of NaOH(aq)
b	Neutralize a solution of HCl(aq)
С	Raise the [H₃O⁺(aq)]
d	Lower the pH of a solution.

8. When used to describe an acid, the word "weak" means that the acid will ______ and exhibit pH that is _____ than expected.

a	Show incomplete dissociation	Lower
b	Show complete dissociation	Lower
С	Show incomplete dissociation	Higher
d	Show complete	Higher

9. A student suspects that an unknown acid of known concentration is diprotic. In order to test this hypothesis, the most useful procedure for the student to follow would be to:

а	Titrate with a strong base of known concentration
b	Determine the molar mass of the acid
С	Find the initial pH of the acid
d	Establish the degree of electrical conductivity.

10. Which polyprotic acid will require the fewest moles of NaOH(aq) to bring the titration to completion?

а	H ₃ PO ₄ (aq)	
b	H₂S(aq)	
С	H₂SO₃(aq)	
d	HOOCCOOH(aq)	

11. Four unknown solutions labeled I, II, III, and IV were tested and the following observations were recorded.

Solution	Conductivity	рН
1	Poor	8.1
П	Excellent	1.4
Ш	Poor	6.1
IV	Excellent	13.7

The strong acid is solution, while the weak base is solution a II IV
b III I
c II IV
d II I
The strongest acid listed below is
a H ₃ X(aq)
b H ₂ X(aq)
c HX(aq)
d X ⁻ (aq)
The property that acids and bases have in common is that they
a Both undergo reduction
b Both change indicators
c Both undergo oxidation
d Both have a high concentration of [OH ⁻ (aq)]
When butter goes rancid, it has a sour taste. One should also expect it to
a Neutralize a solution of HCl(aq)
b Have a pH > 7
c React with Zn(s) to form H ₂ (g)
d Turn blue in the presence of HBb.
If acid HX(aq) is stronger than acid HY(aq) then
a HY(aq) will have a lower pH than HX(aq)
b $HX(aq)$ will have a lower $[H_3O^+(aq)]$ than $HY(aq)$
c HY(aq) will have a higher [OH (aq)] than HX(aq)
d HX(aq) will have a higher pH than HY(aq)
What is the essential difference between a 1.0 mol/L solution of a weak acid and a 1.0 mol/L solution of a strong acid?
a The strong acid can act as a buffer, while the weak acid cannot.
b The strong acid can undergo a stoichiometric reaction with NaOH(aq) while the weak acid cannot.
c The strong acid has a lower pH than the weak acid.
d The weak acid is more dilute than the strong acid.

17.	As NaOH(s	aOH(s) is added to HCl(aq), all of the following changes in solution properties should be observed EXCEPT		
		а	Decrease in temperature	
		1.	l	

а	Decrease in temperature		
b	Increase in pH		
С	Increase in [OH ⁻ (aq)]		
d	Decrease in [H₃O⁺(aq)]		

12.

13.

14.

15.

16.

18. Which statement about acids is true?

а	Acids increase [H ₃ O ⁺ (aq)]
b	Acids increase [OH ⁻ (aq)]
С	Acids accept protons in a chemical reaction.
d	Acids increase the pH of an aqueous solution.

19. When a base is added to an acid, the reaction will show

а	A decrease the pH of an aqueous solution		
b	A decrease of [OH ⁻ (aq)] in the aqueous solution		
С	A gain of electrons by the base		
d	A gain of protons by the base		

20. A student observed that a solution spilled in the garage at home was reacting with a zinc container. The solution could be expected to

а	Be a reducing agent	
b	To have a high pH	
С	To donate protons	
d	To turn HPr red.	

21. Some 25 mL portions of 0.10 mol/L solutions of $H_2SO_4(aq)$, HCl(aq) and CH_3COOH (aq) are contained in separate, unlabeled flasks. Simple laboratory tests are to be done to identify the solutions. Which test could best identify one of the solutions?

а	The $H_2SO_4(aq)$ can be identified by the amount of KOH that will be required to reach an endpoint.
b	The HCl(aq) can be identified by its reaction with Mg(s) to produce $H_2(g)$
С	The HCl(aq) can be identified by the red colour that results when HMo indicator is added.
d	CH₃COOH(aq) can be identified as having the lowest pH.

22.	A student observed that a solution spilled in the garage at home reacted with a zinc container.	The correct statement
	regarding the solution is	

а	the solution is a reducing agent
b	the solution turns phenol red to a yellow colour
С	Accepting protons
d	the solution is undergoing oxidation

23. Numerical response question

Left justify your answer in the boxes provided.

Consider the list of reactants below

- 1. HCl_(aq) and NaOH_(s)
- 2. CH₃COOH_(aq) and NaCH₃COO_(aq)
- 3. $HNO_{3(aq)}$ and $NaNO_{3(aq)}$
- 4. $NaH_2PO_{4(aq)}$ and $Na_2HPO_{4(aq)}$
- 5. $H_2CO_{3(aq)}$ and $NaHCO_{3(aq)}$
- 6. HBr_(aq) and Na₂CO_{3(aq)}

Choose the combination of chemical compounds that will act as buffers. Put the answer(s) in ascending order.

Solutions:

- 1. D
- 2. D
- 3. C
- 4. B
- 5. A
- 6. A
- 7. B
- 8. C
- 9. A
- 10. B
- 11. D
- 12. A
- 13. B
- 14. C
- 15. C
- 16. C
- 17. A
- 18. A
- 19. D
- 20. C
- 21. A
- 22. B
- 23. 245