Acid Unit: Conjugate Pairs

1. Use the following equilibrium to answer the question below.

$$HSO_4$$
 (aq) + HPO_4^2 (aq) $\leftrightarrow SO_4^2$ (aq) + H_2PO_4 (aq)

In this equilibrium, the strongest acid and its conjugate base are _____ and ____

	а	H ₂ PO ₄ -(aq)	HPO ₄ 2-(aq)	
	b	HSO₄⁻(aq)	SO ₄ ²⁻ (aq)	
	С	HSO₄⁻(aq)	HPO ₄ 2-(aq)	
Γ	d	SO ₄ ²⁻ (aq)	$H_2PO_4^-(aq)$	

2. Use the following equilibrium to answer the question below.

$$H_3PO_4(aq) + HCOO(aq) \leftrightarrow HCOOH(aq) + H_2PO_4(aq)$$

In this equilibrium, the strongest base and its conjugate acid are _____ and ____

а	H ₂ PO ₄ -(aq)	H ₃ PO ₄ (aq)	
b	HCOO ⁻ (aq)	HCOOH(aq)	
С	HCOO ⁻ (aq)	H ₃ PO ₄ (aq)	
d	HCOOH(aq)	H ₂ PO ₄ -(aq)	

3. Use the following equilibrium to answer the question below.

$CH_3COOH(aq) + OCI(aq) \leftrightarrow CH_3COO(aq) + HOCI(aq)$

In this equilibrium, the strongest acid and the strongest base are _____ and ____

а	HOCI(aq)	CH ₃ COOH(aq)	
b	HOCl(aq)	CH ₃ COO ⁻ (aq)	
С	OCl ⁻ (aq)	CH₃COO⁻(aq)	
d	CH ₃ COOH(aq)	OCl ⁻ (aq)	

4. Use the following equilibrium to answer the question below.

$$HSO_3$$
 (aq) + $OOCCOO^2$ (aq) $\leftrightarrow SO_3^2$ (aq) + $HOOCCOO$ (aq)

In this equilibrium, the two chemicals that act as bases are _____ and _____

	а	SO ₃ ²⁻ (aq)	OOCCOO ²⁻ (aq)
I	b	HSO ₃ -(aq)	HOOCCOO ⁻ (aq)
	С	OOCCOO ²⁻ (aq)	HOOCCOO ⁻ (aq)
	d	SO ₃ ²⁻ (aq)	HSO₃⁻(ag)

5. Use the following equilibrium to answer the question below.

$$HCO_3$$
 (aq) + $HOOCCOO$ (aq) $\leftrightarrow OOCCOO^2$ (aq) + H_2CO_3 (aq)

In this equilibrium, the two chemicals that act as acids are _____ and _____

а	HCO ₃ - (aq)	OOCCOO ²⁻ (aq)		
b	HOOCCOO ⁻ (aq)	H ₂ CO ₃ (aq)		
С	HCO ₃ - (aq)	H ₂ CO ₃ (aq)		
d	H ₂ CO ₃ aq)	OOCCOO ²⁻ (aq)		

6. Which ion is **LEAST capable** of acting as both an acid and or a base in an aqueous solution?

а	HOOCCOO ⁻ (aq)
b	HCO ₃ -(aq)
С	H₃O⁺(aq)
d	H₃PO₄⁻(ag)

7. Which ion in the list below is **the strongest acid**?

a	H₂S(aq)	
b	HCO₃⁻(aq)	
С	HSO ₄ -(aq)	
d	CH ₃ COO ⁻ (aq)	

8. Which ion in the list below is the strongest base?

а	NO ₃ -(aq)
b	OOCCOO2-(aq)
С	CH₃COO⁻(aq)
d	NH ₃ (aq)

9. Numerical response question

1	l oft justify	v vour an	cwar in	the have	s provided

Left justify your answer in the boxes provided.

Write the equation that represents the ionization of phosphoric acid. Put the answer in ascending order $+ \longleftrightarrow +$

- 1. H₃PO₄
- 2. H⁺
- 3. H₂O
- 4. PO₄³⁻
- 5. H₃O⁺
- 6. H₂PO₄

Solutions:

- 1. B
- 2. B
- 3. D
- 4. A
- 5. B
- 6. C
- 7. C
- 8. D
- 9. 1356