## 1. Numerical response question

Left justify your answer in the boxes provided.

Colton and Skyler are performing a calorimetry experiment. They find that 18.5 kJ of energy is transferred when 1.50 g of methanol (CH<sub>3</sub>OH<sub>(I)</sub>) is burned. The boys determine

that the <u>molar heat of combustion</u> for methanol in this experiment is ±\_\_\_\_\_\_ mol

## 2. Numerical response question

Left justify your answer in the boxes provided.

A tin can calorimeter was used to determine the molar enthalpy of combustion of paraffin wax  $(C_{25}H_{52(s)})$  The following data was collected from the list of descriptors in the box below to answer this question.

| Mass of calorimeter          | 15.5 g  |
|------------------------------|---------|
| Mass of calorimeter & water  | 104.3 g |
| Initial temperature of water | 22.0 °C |
| Maximum temperature of water | 31.7 °C |
| Initial mass of wax          | 35.0 g  |
| Final mass of wax            | 33.9 g  |

The molar enthalpy of combustion of wax for this investigation is  $\pm$  \_\_\_\_\_ mol . Ignore the heat gained by the tin can.

3. Ethane undergoes complete combustion to form <u>liquid</u> water and carbon dioxide. The <u>moles of  $O_2(g)$  consumed</u> when 780 kJ of heat is <u>released</u> will be \_\_\_\_\_ mol of  $O_2(g)$ .

| a | 1.50 |
|---|------|
| b | 6.00 |
| С | 1.75 |
| d | 7.00 |

4. An unknown substance has a molar heat of combustion of  $-740.2 \ \overline{mol}$ . When 0.250 mol of this substance is burned in a calorimeter containing 7.50 kg of water, the increase of temperature for the water will be \_\_\_\_\_\_  $^{\circ}$ C.

| a | 12.2 |
|---|------|
| b | 4.11 |
| С | 7.37 |
| d | 5.89 |

5. A student follows the procedure outlined below:

| I  | Record the temperature of 30 mL of water in a beaker |
|----|------------------------------------------------------|
| П  | Add a pellet of NaOH(s) to the water                 |
| Ш  | Stir until there is no solid left.                   |
| IV | Record the final temperature of the water            |

Which prediction could be tested with the data collected by ONLY these four steps?

| а | kJ                                                                             |
|---|--------------------------------------------------------------------------------|
|   | The molar heat of reaction for NaOH(s) with $H_2O(I)$ will be -28.4 $mol$      |
| b | An exothermic reaction will occur when NaOH(s) is added to H <sub>2</sub> O(l) |
| С | The solubility of NaOH(s) will decrease as the temperature of the water        |
|   | increases.                                                                     |
| d | The temperature change will be less if more NaOH(s) is used                    |

6. When a piece of strontium is dropped into water, the temperature of the water increases. The statement that correctly interprets this information is \_\_\_\_\_\_

| а | $Sr(s) + H2O(I) + energy \rightarrow Sr(OH)2(aq) + H2(g)$      |
|---|----------------------------------------------------------------|
| b | Heat is absorbed by the reaction                               |
| С | The reaction is endothermic                                    |
| d | The reactants have more potential energy than do the products. |

7. A group of students are interested in experimentally determining the molar heat of reaction of candlewax ( $C_{25}H_{52}(s)$ ) with oxygen. Their experiment should be based upon the processes of

| а | Molar fusion and additivity    |  |
|---|--------------------------------|--|
| b | Combustion and Calorimetry     |  |
| С | Formation and Calorimetry      |  |
| d | Neutralization and Calorimetry |  |

8. In an experiment 100 g of methanol (specific heat capacity of 2.53  $g^{\circ}C$ ) at 15.4°C was mixed with 100 g of water at 38.0° C. After thermal equilibrium was reached, the temperature of the mixture was 29.5° C. The amount of energy lost by the water was \_\_\_\_\_ kJ.

| a | 3.56 |
|---|------|
| b | 2.15 |
| С | 5.72 |
| d | 33.4 |

9. Given the equation:

$$2CH_3OH(I) + 3O_2(g) \rightarrow 2CO_2(g) + 4H_2O(g)$$
  $\Delta H = -1275.8 \text{ kJ}$ 

The amount of methanol (CH $_3$ OH(I)) that must be burned to raise the temperature of 700 g of water from 10.0° C to 55.0° C is \_\_\_\_\_\_ g

| а | 13.3 |
|---|------|
| b | 4.05 |
| С | 6.63 |
| d | 9.58 |

10. If 50.7 kJ of energy is transferred when 6.50 g of glucose ( $C_6H_{12}O_6$ ) is burned in a calorimeter, then

the molar enthalpy of combustion for glucose is  $\frac{kJ}{mol}$ 

| а | -1.41 x 10 <sup>3</sup> |
|---|-------------------------|
| b | +1.41 x 10 <sup>3</sup> |
| С | 2.67 x 10 <sup>3</sup>  |
| d | -2.67 x 10 <sup>3</sup> |

| 11. | The water in | a calorimeter is heated by the complete combustion of methane. | The water will show |
|-----|--------------|----------------------------------------------------------------|---------------------|
|     | a(n)         | in temperature because the combustion reaction is              |                     |

| а | Increase | EXOTHERMIC  |
|---|----------|-------------|
| b | Increase | ENDOTHERMIC |
| С | Decrease | EXOTHERMIC  |
| d | Decrease | ENDOTHERMIC |

12. David, Michael, and Kolbe mix a 100 g sample of water at  $10.5^{\circ}$ C with a 250 g sample of water at  $50.0^{\circ}$ C. No one in the group has a calculator, so they use good estimating skills to find a reasonable value for the final equilibrium temperature.

They make different statements about the possible answer.

| Statement 1 | They all agree the temperature is between 10.5° C and 50.0° C.                                                                             |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Statement 2 | David says the temperature is closer to 50.0° C than to 10.5° C because there is more hot water.                                           |
| Statement 3 | Kolbe says the temperature should be the average of the two initial temperatures because both samples have the same specific heat capacity |
| Statement 4 | Michael says the amount of thermal energy lost by one sample is equal to the amount of thermal energy gained by the other sample.          |
| Statement 5 | They all think the system involves kinetic changes of energy only.                                                                         |

The number of **TRUE** statements given above is/are \_\_\_\_\_.

| а | 1 |
|---|---|
| b | 2 |
| С | 4 |
| d | 5 |

13. If 0.250 mol of element X is burned in oxygen to produce 0.250 mol of the corresponding oxide, then the temperature of 200.0 g of the surrounding water rises 15.0  $^{\circ}$ C. The molar heat of formation

for the oxide is \_\_\_\_\_\_  $\frac{kJ}{mol}$ 

| а | -1.26 |
|---|-------|
| b | -3.15 |
| С | -12.6 |
| d | -50.3 |

14. In a calorimetric experiment, the complete combustion of 4.708 g of cyclopentane ( $C_5H_{10}(I)$ ) caused the temperature of 3.800 kg of water to increase by 10.40°C. This data would indicate that the molar

enthalpy of combustion of cyclopentane is \_\_\_\_\_\_ mol

| а | 2430 |
|---|------|
| b | 2381 |
| С | 2467 |
| d | 2891 |

15. A single reactant (X(s)) undergoes a chemical reaction in a bomb calorimeter. The following observations are gathered.

| Room Temperature                            | 21.00 °C                     |
|---------------------------------------------|------------------------------|
| Mass of reactant                            | 5.66 g                       |
| Molar mass of reactant                      | <u>g</u><br>45.91 <i>mol</i> |
| Initial temperature of water in calorimeter | 29.7 °C                      |
| Final temperature of water in calorimeter   | 11.3 °C                      |
| Mass of water in calorimeter                | 150 mL                       |

According to this information, the molar enthalpy of reaction for X(s) is \_\_\_\_\_ mol

| а | +93.8 |
|---|-------|
| b | +49.4 |
| С | -44.4 |
| d | -1.43 |

16. A 7.08 kJ sample of heat is required to raise the temperature of a calorimeter and its contents by 1.00 °C. When 0.900 g of ethane ( $C_2H_6(g)$ ) is ignited in a calorimeter, the temperature of the calorimeter and its contents rises by 9.70 °C.

Based on this information, the molar enthalpy of combustion of ethane is \_\_\_\_\_ mol

| a | 7.63 x 10 <sup>1</sup> |
|---|------------------------|
| b | 2.15 x 10 <sup>3</sup> |
| С | 2.53 x 10 <sup>3</sup> |
| d | 2.30 x 10 <sup>3</sup> |

17. Consider the following balanced reaction.

$$H_2SO_4(aq) + 2NaOH(aq) \rightarrow 2H_2O(l) + Na_2SO_4(aq)$$

In an attempt to determine  $\Delta H$  of this acid-base neutralization reaction, a student mixes 50.0 mL

$$\underline{mol}$$
  $\underline{mol}$ 

of 0.200  $\overline{L}$  NaOH(aq) with 50.0 mL of 0.100  $\overline{L}$  H<sub>2</sub>SO<sub>4</sub>(aq). Both solutions are at an initial temperature of 20.0°C.

The reaction takes place in a well insulated container with negligible heat absorbing capacity. The temperature of the mixture increases to 21.3°C. Assuming the solutions are like water (with

a density of 1.00  $\frac{g}{mL}$  and a specific heat capacity of 4.19  $\frac{kJ}{kg^{\circ}C}$  ), the calculated enthalpy of

| а | -10.9 |
|---|-------|
| b | -109  |
| С | -54.5 |
| d | -27.4 |

18. To raise the temperature of a calorimeter and its contents  $1.00\,^{\circ}$ C requires 5028 J. When 0.500 mol of fuel is burned in the calorimeter, the temperature of the calorimeter increased  $4.00\,^{\circ}$ C. Using this

information, the molar enthalpy of combustion of the fuel is \_\_\_\_\_\_ is

| а | +10.1 |
|---|-------|
| b | -10.1 |
| С | -40.2 |
| Ч | +40.2 |

19. A Bunsen burner that uses methane provides 500 kJ of energy for each mole of fuel burned. The number of moles of methane needed to heat 2000 mL of water from  $25.0^{\circ}$ C to  $50.0^{\circ}$ C is \_\_\_\_ mol.

| а | 0.419 |
|---|-------|
| b | 5.00  |
| С | 21.0  |
| d | 24.0  |

20. A sample of AgI(s) is formed from its elements. In a bomb calorimeter of 500 mL of water goes from a temperature of 13.2°C to 16.1°C. This reaction releases \_\_\_\_\_ J of thermal energy.

| а | 2.59 x 10 <sup>-3</sup> J |
|---|---------------------------|
| b | 6.08 J                    |
| С | 33.7 J                    |
| d | 6.08 x 10 <sup>3</sup> J  |

21. A single reactant is allowed to undergo a chemical reaction in the bomb of a calorimeter. The following observations are recorded from this experiment.

| Room Temperature                            | 21.00 °C        |
|---------------------------------------------|-----------------|
| Mass of reactant                            | 1.23 g          |
| Molar mass of reactant                      | <u>g</u>        |
|                                             | 56.5 <i>mol</i> |
| Initial temperature of water in calorimeter | 18.45 °C        |
| Final temperature of water in calorimeter   | 24.85 °C        |
| Mass of water in calorimeter                | 86.00 g         |

According to this information, the molar enthalpy of reaction is  $\underline{\underline{g}}$ 

| а | -42.2 |
|---|-------|
| b | -50.2 |
| С | -63.2 |
| d | -106  |

22. A sample of  $NO_2(g)$  is formed from its elements inside a bomb calorimeter. The correct observation for the water surrounding the reaction chamber is \_\_\_\_\_\_

| а | temperature of the water will rise because the reaction is endothermic |
|---|------------------------------------------------------------------------|
| b | temperature of the water will fall because the reaction is endothermic |
| С | temperature of the water will rise because the reaction is exothermic  |
| d | temperature of the water will fall because the reaction is exothermic  |

23. Ethyne (acetylene) is completely burned to yield gaseous products. If its molar heat of combustion is

-1255.5 
$$\frac{kJ}{mol}$$
 , then combustion 1.00 mol of ethyne will heat 7.50 kg of water by \_\_\_\_  $^{\circ}$ C

| а | 49.4 |
|---|------|
| b | 39.9 |
| С | 52.6 |
| d | 34.1 |

## Solutions:

- 1. 395
- 2. 1.16
- 3. C
- 4. D
- 5. B
- 6. D
- 7. B
- 8. A
- 9. C
- 10. A
- 11. A
- 12. C
- 13. D
- 14. C
- 15. A
- 16. D
- 17. B
- 18. C
- 19. A
- 20. D
- 21. D
- 22. B
- 23. B