Acid Unit: Brønsted Lowry

1. Which reaction favours the **reactants?**

а	$H_3O^+(aq) + OH^-(aq) \leftrightarrow 2H_2O(I)$
b	$HCN(aq) + OH^{-}(aq) \leftrightarrow CN^{-}(aq) + H_2O(I)$
С	$SO_4^{2-}(aq) + H_2S(aq) \leftrightarrow HSO_4^{-}(aq) + HS^{-}(aq)$
d	$H_2CO_3(aq) + NH_3(aq) \leftrightarrow HCO_3^-(aq) + NH_4^+(aq)$

2. Which reaction favours the **products?**

а	$HCO_3^-(aq) + SO_3^{2-}(aq) \leftrightarrow CO_3^{2-}(aq) + HSO_3^-(aq)$
b	$C_2H_5OCOOH(aq) + HCO_3^- \leftrightarrow C_2H_5OCOO^-(aq) + H_2CO_3(aq)$
С	$HNO_2(aq) + F^{-}(aq) \leftrightarrow NO_2^{-}(aq) + HF(aq)$
d	$C_3H_7COO^-(aq) + H_2PO_4^-(aq) \leftrightarrow C_3H_7COOH(aq) + HPO_4^{2-}(aq)$

3. The reaction $HB(aq) + X^{-}(aq) \leftrightarrow HX(aq) + B^{-}(aq)$ will favour products if _____

а	HB(aq) is a stronger acid than HX(aq)
b	HB(aq) is a weaker acid than HX(aq)
С	B-(aq) is a stronger base than X (aq)
d	HB(aq) is an amphiprotic acid.

4. When added to H₃PO₄(aq), which base would cause a reaction that favours the <u>reactant</u>s?

а	OH ⁻ (aq)
b	SO ₄ ²⁻ (aq)
С	HCO ₃ -(aq)
d	HSO₃⁻(aq)

5.	Choose the correct statement for the following reaction
	H DO -(-a) + CH COO-(-a) + CH COOH(-a) + HDO 2-(-a)

а	Equilibrium favours the products.
b	H₂PO₄ (aq) acts as a base.
С	CH ₃ COO ⁻ (aq) acts as an acid.
d	HPO ₄ ²⁻ (aq) acts as a base.

6. If 0.10 mol/L solutions of HOCl(aq) and KCH₃COO(aq) are mixed together, the following equilibrium is established: HOCl(aq) + CH₃COO⁻(aq) ↔ OCl⁻(aq) + CH₃COOH(aq)

This reaction _____

а	Favours reactants because HOCl(aq) is a weaker base than the acid CH₃COO (aq)
b	Favours reactants because HOCl(aq) is a stronger acid than the base CH₃COO⁻(aq)
С	Favours products because HOCl(aq) is a stronger base than the acid CH₃COO (aq)
d	Favours products because OCl⁻(aq) is a weaker base than CH₃COO⁻(aq)

7. A Brønsted Lowry acid will ______ a ____ during a neutralization reaction.

а	Donate	Neutron
b	Accept	Proton
С	Donate	Proton
d	Accept	Neutron

8. A Brønsted Lowry base will ______ a _____ during a neutralization reaction.

а	Donate	Neutron
b	Accept	Proton
С	Donate	Proton
d	Accept	Neutron

9. Consider the Brønsted Lowry reaction below:

$$NH_3(aq) + H_2O_{(I)} \leftrightarrow NH_4^+(aq) + OH^-(aq)$$

A Brønsted Lowry conjugate acid-base pair is _____ and _____.

а	H ₂ O _(I)	OH ⁻ (aq)
b	NH₃(aq)	H ₂ O _(I)
С	NH₄⁺(aq)	OH ⁻ (aq)
d	NH₄⁺(aq)	H ₂ O _(I)

10. Numerical response question

_		
г		
L		

Left justify your answer in the boxes provided.

Choose all entities in the list below that can act as Brønsted Lowry Acids. Record the answer(s) in ascending order.

- 1. HSO_{4 (aq)}
- 2. SO_{4 (aq)}
- 3. HCOOH_(aq)
- 4. HCOO-(aq)
- 5. NH_{3(aq)}
- 6. NH_{4 (aq)}
- 7. PO₄ (aq)
- 8. HPO_{4 (aq)}

Solutions:

- 1. C
- 2. B
- 3. A
- 4. B
- 5. D
- 6. B
- 7. C
- 8. B
- 9. A
- 10. 1368