Chemistry 20 Simple Stoichiometry Lab

Name ₋		Lab Partner	Sco	re	
Purpos Proble		To predict and collect a precipit What is the effect upon the ma changed?			
Equipn Prela	b Write a	electronic scale Weighing paper 100 mL graduated cylinder Meniscus finder Copper II sulfate pentahydrate Sodium hydroxide (a deliquesce Distilled water Beakers (various sizes) Stir rod Wash bottle Funnel and filter paper Ring clamp and stand a balanced reaction for a double hydrate and a solution of sodium	replacement rea		d copper (II) sulfate
	a.	ssigned mass of copper (II) sulfar Using this value and assuming of should be formed. (Theoretical So be certain it is correct! y the manipulated, responding a	excess sodium hy value). You will l	droxide, calculate nave to share this	the mass of precipitate that
		ulated R	esponding		

Procedure:

- 1. Clean and dry all glassware.
- 2. Weigh YOUR assigned amount of CuSO₄.5H₂O(s) and place it in a clean beaker
- 3. Record the exact amount of mass that you have used.
- 4. Measure out 100 mL of the 1.50 mol/L NaOH(aq) that is provided

- 5. Add this solution to the copper (II) sulfate and stir.
- 6. Record your observations.
- 7. Decant off the liquid part of the mixture in your beaker. Do NOT lose any solid chunks while doing this. It is safe to put the decanted liquid down the sink.
- 8. Get and weigh a large piece of filter paper. Record the mass.
- 9. Set up the funnel and filter paper using the ring stand.
- 10. Be sure the filter paper is rinsed with distilled water and has a good seal with the side of the filter.
- 11. Carefully transfer all the solid left in your beaker to the filter paper. Try to spread the solid out so that it will dry faster. (this is why a BIG piece of filter paper is good)
- 12. Using a minimum of water to rinse, ensure that ALL the solid precipitate from the beaker is transferred to the filter paper.
- 13. Allow the funnel and filter paper to dry at least overnight
- 14. Weigh the filter paper and the precipitate. Record the mass

Observations:

You must record your own observations and observations from four other groups who will have started with a different mass of copper (II) sulfate pentahydrate.

My observations

Tity Observations		
Mass of CuSO ₄ .5H ₂ O(s)	Mass of filter paper	Mass of precipitate and filter
		paper
Theoretical yield of precipitate	Actual yield of precipitate	% yield for your value

Summary of observations from 5 groups

Mass of CuSO ₄ .5H ₂ O(s)	Theoretical yield of precipitate	Actual Lab yield for precipitate	Percentage yield

Analysis:

Is there a general pattern for the percentage yield? If or if not, give scientific reasons why this has happened. Remember that an error in measurement is not a scientific reason!!!! Never give this as an excuse for being off from the expected value!

Conclusion:

Remember that a conclusion must answer the problem. It must be based on your observations and must be supported with accepted scientific theories and knowledge. DO NOT restate your observations. Conclusions must give a "WHY DID YOU SEE THIS?"