Acid and Base Unit: pH and [H⁺], pOH and [OH⁻]

1. A pH meter probe immersed in a solution displays a reading of 4.21. The [OH (aq)] of the solution is mol/L

а	1.6 x 10 ⁻¹⁰
b	6.2 x 10 ⁻⁵
С	1.6 x 10 ⁴
d	6.2 x 10 ⁹

2. A barium hydroxide solution has a concentration of 1.0 x 10⁻² mol/L this solution will have a pH of _____

а	1.70
b	12.03
С	12.30
d	13.07

3. An apple was analyzed and found to have a pH of 3.30. The [OH (aq)] for this sample is _____ mol/L

а	1.0 x 10 ⁻³
b	5.0 x 10 ⁻⁴
С	2.0 x 10 ⁻¹¹
d	1.0 x 10 ⁻¹⁰

4. The $[H_3O^+(aq)]$ in 0.020 mol/L $Sr(OH)_2(aq)$ is _____ mol/L

а	2.5 x 10 ⁻¹³
b	5.0 x 10 ⁻¹²
С	4.0 x 10 ⁻²
d	1.6 x 10 ⁻¹

5. A solution with a pH of 5 is _____ with ____ of 1.0×10^{-5} mol/L

а	Basic	[OH ⁻ (aq)]
b	Acidic	[H₃O⁺(aq)]
С	Acidic	[OH ⁻ (aq)]
d	basic	[H₃O⁺(aq)]

6.	When 12.2 g of Sr(OH) ₂ (aq) is dissolved and dissociated completely to make 4.00 L of aqueous solution, the pH of the
	solution is

а	12.70
b	12.40
C	1.60
d	1.30

7. A solution of an unknown substance has $[H_3O^+(aq)]$ of 4 x 10^{-8} mol/L. If HCl(aq) solution is added drop by drop, the pH and the solution becomes more ______.

а	Increases	Basic
b	Decreases	Basic
С	Increases	Acidic
d	decreases	Acidic

8. A solution of 0.030 mol/L HCl(aq) has a pH of _____

	а	2.48	
	b	2.00	
	С	1.52	
1	Ь	0.48	

9. The pH of a detergent solution is 9.60. Its [H₃O⁺(aq)] is _____ mol/L

а	7.9 x 10 ⁻⁸
b	4.0 x 10 ⁻⁵
С	2.5 x 10 ⁻¹⁰
d	1.3 x 10 ⁻⁷

10. If 2.00 g of NaOH(s) is dissolved in enough water to make 500 mL of solution, the [H₃O⁺(aq)] will be _____ mol/L

а	1.0 x 10 ⁻¹
b	5.0 x 10 ⁻²
С	2.0 x 10 ⁻¹³
d	1.0 x 10 ⁻¹³

а	0.21	
b	0.68	
С	13.10	
d	13.32	

12. The pH of a basic solution that has an $[OH^{-}(aq)]$ of 6.4×10^{-3} mol/L is _____

а	2.19
b	10.25
С	11.81
d	6.40

13. A 7.5 x 10^{-5} mol/L solution of Sr(OH)₂(aq) will have a pH of _____.

а	3.82
b	4.12
С	9.88
d	10.18

14. As the pH of a solution decreases, the _____

а	[OH ⁻ (aq)] increases
b	[H₃O⁺(aq)] increases
С	Solution becomes more basic
d	Conductivity of the solution decreases

15. A 3.5×10^{-3} mol/L of Li(OH) (aq) has a pH of _____

а	2.15
b	11.85
С	2.46
d	11.54

16. A drain cleaner was analyzed and found to have a pOH of 2.50. the [H₃O⁺(aq)] for this sample is _____ mol/L

а	3.2x 10 ⁻³
b	3.2x 10 ⁻¹²
С	3.2x 10 ⁻¹¹
d	3.2x 10 ⁻⁴

17. Matt and Richard dissolve 16 g of KOH(s) in 0.55 L of water. The pH of this solution will be _____

а	0.29
b	0.80
С	13.71
d	13.20

18. The pH of 7.5 x 10⁻⁵ mol/L Ba(OH)₂(aq) is_____

а	10.18
b	9.88
С	4.12
d	3.82

19. In a 0.20 mol/L (aq) solution of $HNO_3(aq)$, the concentration of the hydroxide ion is _____ mol/L

а	5.0 x 10 ⁻¹⁴
b	2.0 x 10 ⁻¹⁴
С	5.0 x 10 ⁻⁷
d	1.0 x 10 ⁻⁷

20. If a solution has a pH of 4.0, then the [OH (aq)] will be _____ mol/L

а	1x 10 ⁻³
b	1x 10 ⁻⁴
С	1x 10 ⁻⁶
d	1x 10 ⁻¹⁰

21.	21. Numerical response question		
	Left justify your answer in the boxes provided.		
	A solution has a hydronium ion concentration of 0.0050 mol/L. This solution will have a pOH of		

Solutions:

- 1. A
- 2. C
- 3. C
- 4. A
- 5. B
- 6. A
- 7. D
- 8. C
- o. c
- 9. C
- 10. D
- 11. D
- 12. C
- 13. D
- 14. B
- 15. D
- 16. B
- 17. C
- 18. A
- 19. A
- 20. D
- 21. 11.70