Stereochemistry Lab	Teacher Notes	Chemistry 20
Name	Partner	
Purnose: To use the VSEPR	theory to predict shapes around central atoms of molecular compounds & polyatomic jor	

Procedure:

Use the model kits provided to build <u>3-D models</u> of the following molecular compounds.

Fill in all the missing areas of the observation table. Your textbook may be of help. (See pages 85 -> 112) - these pages are based on the Nelson book. If you have a different text, then adjust the page numbers

Don't be afraid to spend 3 or 4 eighty minute periods on this. Time spent here will pay off later in the course!! And in chemistry 30 when you do the organic section!

Observations: Enlarge this chart and fill in all spaces. (2 marks per line) (1/2 mark will be subtracted for every error per line)

In the stereo chemical formula line:

Remember that – means 'in the plane', ---- means 'up towards you', and ↓ means 'down away from you'

	Empirical formula / Molecular formula	Lewis Diagram Show valence e ⁻ only	Stereo-chemical formula	Central Atom(s) – lone pairs	Central Atoms(s) – bonding e	shape(s) around each central atom	Bond dipoles	Polar or Non-polar
1	NH _{3(g)}	N has 5 valence e ⁻ , H has 1 valence e ⁻	H N - H H Another stereo diagram would have the left hand H pointing away from you	N – one lone pair	N – 3 bonding electrons	Pyramidal	N ↔ H nitrogen is more electronegative unbalanced dipole	Polar
2	C ₂ Cl _{4(g)}	Note the double bond between the two carbons. Carbon acts like it is bonding in three directions instead of four directions	CI - C = C - CI CI CI Bond angles should all be 120°	C atoms have 0 – lone pairs	Both C atoms have – 4 bonding electrons – but only 3 directions	Trigonal planar	C ← C no dipole C← Cl Chlorine is more electronegative Dipoles cancel	Non polar
3	CF _{4(g)}	C has 4 valence electrons F has 7 valence electrons	F	Carbon has 0 lone pairs	Carbon has 4 bonding electrons	Tetra hedral	F ↔ C Fluorine is more electronegative Dipoles cancel	Non polar

	Empirical formula / Molecular formula	Lewis Diagram Show valence e only	Stereo-chemical formula	Central Atom(s) – lone pairs	Central Atoms(s) – bonding e	shape(s) around each central atom	Bond dipoles	Polar or Non-polar
4	OCI _{2(g)}	O has 6 valence e- Cl has 7 valence e ⁻	Cl – O Cl	Oxygen has 2 lone pairs	Oxygen has 2 bonding electrons	Angular, bent, v-shaped	O ← Cl Oxygen is slightly more electronegative than chlorine Unbalanced dipole	Polar
5	C ₂ F _{2(g)}	C has 4 valence e- F has 7 valence e ⁻	F-C = C-F	Carbon has 0 lone pairs	Carbon has 4 bonding e ⁻ , but they all go in one direction	Linear	F ← C Fluorine is more electronegative Dipoles cancel	Non polar
6	HOF _(I)	H has 1 valence e ⁻ O has 6 valence e F has 7 valence e ⁻	H – O – F	Oxygen has 2 lone pairs	Oxygen has 2 bonding electrons	Angular, Bent, v-shaped	O ← H Oxygen is more electronegative O ← F Fluorine is more electronegative	polar
7	NHF _{2(g)}	N has 5 valence e ⁻ H has 1 valence e ⁻ F has 7 valence e ⁻	F — N — H	Nitrogen has one lone pair	Nitrogen has 3 bonding e	Pyramidal	N ← F Fluorine is more electronegative N ← H Nitrogen is more electronegative	polar
8	C ₂ IBr _(I)	C has 4 valence e ⁻ I and Br both have 7 valence e ⁻	Br − C Ξ C − I	Both C atoms have 0 lone pairs	Both C atoms have – 4 bonding electrons – but only 2 directions	Linear	C ↔ Br Br is more electronegative C ↔ I I is slightly more electronegative	polar
8	C ₂ IBr _(I)	C has 4 valence e ⁻ I and Br both have 7 valence e ⁻	Br − C Ξ C − I	Both C atoms have 0 lone pairs	Both C atoms have – 4 bonding electrons – but only 2 directions	Linear	C ↔ Br Br is more electronegative C ↔ I I is slightly more electronegative	polar

	Empirical formula / Molecular formula	Lewis Diagram Show valence e only	Stereo-chemical formula	Central Atom(s) – lone pairs	Central Atoms(s) – bonding e	shape(s) around each central atom	Bond dipoles	Polar or Non-polar
9	CHCIBr _{2(I)}	C- 4 valence e ⁻ H – 1 valence d ⁻ Cl and Br – 7 valence e ⁻	Br H − C Br ↓ Cl	C has 0 lone pairs	C has 4 bonding e	tetrahedral	C ← Br Br is more electronegative C ← Cl Chlorine is more electronegative C ← H C is more electronegative	polar
10	C ₂ HF _{3(I)}	C – 4 valence e ⁻ H – 1 valence e ⁻ F – 7 valence e ⁻	F-C=C-F H F	C has 0 lone pairs	C has 4 bonding e-, but 3 directions	Trigonal planar	C ← H C is more electronegative C ← F Fluorine is more electronegative	polar
11	H ₂ O _{2(I)}	H – 1 valence e ⁻ O – 6 valence e ⁻	H – O O – H Can also be a 'boat shape'	O has 2 lone pairs	O has 2 bonding e	Angular, bent, v-shaped	O ↔ H Oxygen is more electronegative	polar
12	CO _{2(g)}	C – 4 valence e ⁻ O – 6 valence e ⁻	O = C = O	C has 0 lone pairs	C has 4 bonding e	Linear	C ← O Oxygen is more electronegative Dipole cancel	Non polar
13	N ₂ H ₃ F _(g)	N – 5 valence e ⁻ H – 1 valence e ⁻ F – 7 valence e ⁻	H –N – N →F ↓ H H	N has 1 lone pair	N has 3 bonding e-	Pyramidal and pyramidal	N ↔ H Nitrogen is more electronegative N ↔ N no dipole N ↔ F Fluorine is more electronegative	polar

	Empirical formula / Molecular formula	Lewis Diagram Show valence e only	Stereo-chemical formula	Central Atom(s) – lone pairs	Central Atoms(s) – bonding e	shape(s) around each central atom	Bond dipoles	Polar or Non-polar
14	C ₂ H ₅ OH _(I)	C – 4 valence e ⁻ O – 6 valence e ⁻ H – 1 valence e ⁻	H H	C has 0 lone pairs O has 2 lone pairs	C – 4 bonding e ⁻ O – 2 bonding e-	Tetrahedral Tetrahedral Angular or bent or v-shaped	C ← O Oxygen is more electronegative O ← H Oxygen is more electronegative H ← C C is more electronegative	polar
15	NH ₄ ⁺ (aq)	N – 5 valence e ⁻ H – 1 valence e ⁻	H [†] H − N H H	N has 1 lone pair	N – 3 bonding e One coordinate covalent bond with the H	Tetrahedral	N ← H Nitrogen is more electronegative	So polar that it forms an ion
16	CO ₃ ²⁻ (aq)	C has 4 valence e- O has 6 valence e ⁻ O ⁻ has 7 valence e ⁻	O. 	C – 0 lone pairs O – 2 lone pairs O has 2 lone pairs	C – 4 bonding e O – 2 bonding e O has 1 bonding e	Trigonal pyramidal	C ↔ O O is more electronegative C ↔ O O is more electronegative	So polar that it forms an ion
17	NO _{3 (aq)}	N – 5 valence e ⁻ O – 6 valence e ⁻ O ⁻ 7 valence e ⁻	0°-N-0 	N – 1 lone pair O – 2 lone pairs O has 2 lone pairs	N – 3 bonding e ⁻ O – 2 bonding e ⁻ O has 1 bonding e ⁻	Around N – pyramidal Around O – bent, angular or v-shaped	N ↔ O O is more electronegative N ↔ O' O' is more electronegative	So polar that it forms an ion

- 1. Identify molecules (compounds or polyatomic ions) with multiple bonds: C₂Cl₄, C₂F₂, C₂IBr, C₂HF₃, CO₂, CO₃²⁻
 - Multiple bonds make the reagent less stable
 - Multiple bonds bring the atoms closer together
- 2. Identify the molecule(s) with <u>coordinate covalent</u> bonds. NH₄⁺
- 3. Based on given states, which molecules have the strongest bonds? All the liquids
- 4. Based on given states, which molecules have the weakest bonds? All the gases
- 5. Do questions 9, 10, and 11 from pages 100 → 101 of your text. (Attach a piece of paper please)
- 6. Glucose has MANY isomers. Sketch three <u>different line diagrams</u> for glucose.