Gas Laws: KM Theory & Ideal Gases

1.	The kinetic molecular theory of motion of particles is strongly supported by experimental evidence.
	The primary types of motion in molecules of solids, liquids and gases (in that order) will be,,

a	Translational	Rotational	Vibrational
b	Vibrational	Rotational	translational
С	Translational	Vibrational	Rotational
d	Rotational	Translational	Vibrational
-			

2. Scientists have theorized about IDEAL gases, but in application situations, many gases act like REAL gases. Consider the list of statements

i	Under high pressure O₂(g) will compress to O₂(I)
ii	Gas molecules are in constant random motion in straight lines
iii	Gas molecules undergo elastic collisions where no energy is lost
iv	Gas molecules act like rigid hard billiard balls during collisions and experience no change in shape
V	At cold temperatures, gas molecules experience an increase in intermolecular forces causing them to
	stick together.

The number of **TRUE** statements for **IDEAL gases** is _____

а	5
b	4
С	3
d	2

3. A sample of an ideal doubles its volume. How many of the following situations could allow this to happen?

i The mass of the gas is doubled at t	he same conditions of temperature and pressure
ii The mass of the mass is kept const	ant while the pressure is doubled and the temperature is cut in
	ure of the gas remain constant while the temperature is doubled.
<u> </u>	erature of the gas remain constant while the pressure is cut in half

а	4
b	3
С	2
d	1

4. Numerical response question

. 6	
Left justify your answer in the boxes provid	ded.

Johannes van der Waals worked on explaining the difference(s) between Ideal gases and Real gases. List the statements below that apply <u>only</u> to particles of REAL gases

- 1. Like soft spheres
- 2. Constant random motion
- 3. Size is negligible
- 4. Can change state
- 5. Size is significant
- 6. Elastic collisions

List the choice(s) in ascending order.

Answers:

- 1. B
- 2. C
- 3. B
- 4. 145